Skip to content

facebookexperimental/free-threading-benchmarking

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Faster CPython Benchmark Infrastructure

πŸ”’ ▢️ START A BENCHMARK RUN

Results

Here are some recent and important revisions. πŸ‘‰ Complete list of results.

Most recent pystats on main (c9932a9)

linux x86_64 (linux)

date fork/ref hash/flags vs. 3.12.6: vs. 3.13.0rc2: vs. base:
2025-03-02 python/7afa476874b9a432ad6d 7afa476 1.131x ↑
πŸ“„πŸ“ˆ
1.086x ↑
πŸ“„πŸ“ˆ
2025-03-02 python/7afa476874b9a432ad6d 7afa476 (NOGIL) 1.003x ↓
πŸ“„πŸ“ˆ
1.040x ↓
πŸ“„πŸ“ˆ
1.117x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-03-01 python/c9932a9ec8a3077933a8 c9932a9 (NOGIL) 1.010x ↑
πŸ“„πŸ“ˆ
1.027x ↓
πŸ“„πŸ“ˆ
1.106x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-03-01 python/c9932a9ec8a3077933a8 c9932a9 1.130x ↑
πŸ“„πŸ“ˆ
1.086x ↑
πŸ“„πŸ“ˆ
2025-02-28 python/75f38af7810af1c3ca56 75f38af (NOGIL) 1.010x ↑
πŸ“„πŸ“ˆ
1.028x ↓
πŸ“„πŸ“ˆ
1.098x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-02-28 python/75f38af7810af1c3ca56 75f38af 1.120x ↑
πŸ“„πŸ“ˆ
1.077x ↑
πŸ“„πŸ“ˆ
2025-02-28 python/9211b3dabeacb92713ac 9211b3d 1.126x ↑
πŸ“„πŸ“ˆ
1.076x ↑
πŸ“„πŸ“ˆ
2025-02-28 python/9211b3dabeacb92713ac 9211b3d (NOGIL) 1.005x ↓
πŸ“„πŸ“ˆ
1.043x ↓
πŸ“„πŸ“ˆ
1.117x ↓
πŸ“„πŸ“ˆπŸ§ 

linux x86_64 (vultr)

date fork/ref hash/flags vs. 3.12.6: vs. 3.13.0rc2: vs. base:
2025-03-02 python/7afa476874b9a432ad6d 7afa476 1.113x ↑
πŸ“„πŸ“ˆ
1.072x ↑
πŸ“„πŸ“ˆ
2025-03-02 python/7afa476874b9a432ad6d 7afa476 (NOGIL) 1.049x ↓
πŸ“„πŸ“ˆ
1.081x ↓
πŸ“„πŸ“ˆ
1.145x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-03-01 python/c9932a9ec8a3077933a8 c9932a9 (NOGIL) 1.046x ↓
πŸ“„πŸ“ˆ
1.078x ↓
πŸ“„πŸ“ˆ
1.126x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-03-01 python/c9932a9ec8a3077933a8 c9932a9 1.090x ↑
πŸ“„πŸ“ˆ
1.050x ↑
πŸ“„πŸ“ˆ
2025-02-28 python/b5454509612870dd0e09 b545450 1.100x ↑
πŸ“„πŸ“ˆ
1.059x ↑
πŸ“„πŸ“ˆ
2025-02-28 python/b5454509612870dd0e09 b545450 (NOGIL) 1.050x ↓
πŸ“„πŸ“ˆ
1.082x ↓
πŸ“„πŸ“ˆ
1.137x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-02-28 mpage/load_fast_borrow_abs f012a9f (NOGIL) 1.017x ↓
πŸ“„πŸ“ˆ
1.049x ↓
πŸ“„πŸ“ˆ
1.028x ↑
πŸ“„πŸ“ˆπŸ§ 
2025-02-28 mpage/load_fast_borrow_abs f012a9f 1.110x ↑
πŸ“„πŸ“ˆ
1.070x ↑
πŸ“„πŸ“ˆ
1.009x ↑
πŸ“„πŸ“ˆπŸ§ 
2025-02-28 colesbury/gh_130382_reftracer_ d15b422 1.108x ↑
πŸ“„πŸ“ˆ
1.068x ↑
πŸ“„πŸ“ˆ
1.002x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-02-28 python/75f38af7810af1c3ca56 75f38af (NOGIL) 1.045x ↓
πŸ“„πŸ“ˆ
1.077x ↓
πŸ“„πŸ“ˆ
1.133x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-02-28 python/75f38af7810af1c3ca56 75f38af 1.100x ↑
πŸ“„πŸ“ˆ
1.059x ↑
πŸ“„πŸ“ˆ
2025-02-28 python/ab11c097052757b79060 ab11c09 1.111x ↑
πŸ“„πŸ“ˆ
1.070x ↑
πŸ“„πŸ“ˆ
2025-02-28 nascheme/pgo_benchmark_task 8dd8862 (NOGIL) 1.039x ↓
πŸ“„πŸ“ˆ
1.071x ↓
πŸ“„πŸ“ˆ
1.008x ↑
πŸ“„πŸ“ˆπŸ§ 
2025-02-28 python/9211b3dabeacb92713ac 9211b3d 1.109x ↑
πŸ“„πŸ“ˆ
1.069x ↑
πŸ“„πŸ“ˆ
2025-02-28 python/9211b3dabeacb92713ac 9211b3d (NOGIL) 1.057x ↓
πŸ“„πŸ“ˆ
1.089x ↓
πŸ“„πŸ“ˆ
1.150x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-02-27 nascheme/pgo_benchmark_task aae2849 (NOGIL) 1.067x ↓
πŸ“„πŸ“ˆ
1.099x ↓
πŸ“„πŸ“ˆ
1.023x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-02-27 mpage/all_blocks 9ad230b (NOGIL) 1.029x ↓
πŸ“„πŸ“ˆ
1.061x ↓
πŸ“„πŸ“ˆ
1.028x ↑
πŸ“„πŸ“ˆπŸ§ 
2025-02-27 mpage/load_fast_borrow_abs 0d98b60 (NOGIL) 1.024x ↓
πŸ“„πŸ“ˆ
1.056x ↓
πŸ“„πŸ“ˆ
1.034x ↑
πŸ“„πŸ“ˆπŸ§ 
2025-02-27 python/8ba0d7bbc295781bf279 8ba0d7b (NOGIL) 1.052x ↓
πŸ“„πŸ“ˆ
1.084x ↓
πŸ“„πŸ“ˆ
1.008x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-02-27 tom-pytel/fix_issue_128942 0bcde5c (NOGIL) 1.058x ↓
πŸ“„πŸ“ˆ
1.090x ↓
πŸ“„πŸ“ˆ
1.015x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-02-27 python/d027787c8d89f59a9f0b d027787 (NOGIL) 1.044x ↓
πŸ“„πŸ“ˆ
1.076x ↓
πŸ“„πŸ“ˆ
1.001x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-02-27 python/45a24f54af4a65c14cc1 45a24f5 (NOGIL) 1.043x ↓
πŸ“„πŸ“ˆ
1.075x ↓
πŸ“„πŸ“ˆ
2025-02-27 python/2a18e80695ac1f05c95e 2a18e80 (NOGIL) 1.043x ↓
πŸ“„πŸ“ˆ
1.075x ↓
πŸ“„πŸ“ˆ
1.002x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-02-27 tom-pytel/fix_issue_129107b afa6cec (NOGIL) 1.043x ↓
πŸ“„πŸ“ˆ
1.075x ↓
πŸ“„πŸ“ˆ
1.000x ↓
πŸ“„πŸ“ˆπŸ§ 

* indicates that the exact same versions of pyperformance was not used.

Longitudinal speed improvement

Improvement of the geometric mean of key merged benchmarks, computed with pyperf compare. The results have a resolution of 0.01 (1%).

Configuration speed improvement

Documentation

Running benchmarks from the GitHub web UI

Visit the πŸ”’ benchmark action and click the "Run Workflow" button.

The available parameters are:

  • fork: The fork of CPython to benchmark. If benchmarking a pull request, this would normally be your GitHub username.
  • ref: The branch, tag or commit SHA to benchmark. If a SHA, it must be the full SHA, since finding it by a prefix is not supported.
  • machine: The machine to run on. One of linux-amd64 (default), windows-amd64, darwin-arm64 or all.
  • benchmark_base: If checked, the base of the selected branch will also be benchmarked. The base is determined by running git merge-base upstream/main $ref.
  • pystats: If checked, collect the pystats from running the benchmarks.

To watch the progress of the benchmark, select it from the πŸ”’ benchmark action page. It may be canceled from there as well. To show only your benchmark workflows, select your GitHub ID from the "Actor" dropdown.

When the benchmarking is complete, the results are published to this repository and will appear in the complete table. Each set of benchmarks will have:

  • The raw .json results from pyperformance.
  • Comparisons against important reference releases, as well as the merge base of the branch if benchmark_base was selected. These include
    • A markdown table produced by pyperf compare_to.
    • A set of "violin" plots showing the distribution of results for each benchmark.

The most convenient way to get results locally is to clone this repo and git pull from it.

Running benchmarks from the GitHub CLI

To automate benchmarking runs, it may be more convenient to use the GitHub CLI. Once you have gh installed and configured, you can run benchmarks by cloning this repository and then from inside it:

gh workflow run benchmark.yml -f fork=me -f ref=my_branch

Any of the parameters described above are available at the commandline using the -f key=value syntax.

Collecting Linux perf profiling data

To collect Linux perf sampling profile data for a benchmarking run, run the _benchmark action and check the perf checkbox. Follow this by a run of the _generate action to regenerate the plots.

License

This repo is licensed under the BSD 3-Clause License, as found in the LICENSE file.

About

Benchmark results for free-threaded builds of Python

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published