Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add token parser for Bedrock & fix anthropic typo #1851

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 27 additions & 0 deletions src/ragas/cost.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,33 @@ def get_token_usage_for_anthropic(
return TokenUsage(input_tokens=0, output_tokens=0)


def get_token_usage_for_bedrock(
llm_result: t.Union[LLMResult, ChatResult],
) -> TokenUsage:
token_usages = []
for gs in llm_result.generations:
for g in gs:
if isinstance(g, ChatGeneration):
if g.message.response_metadata != {}:
token_usages.append(
TokenUsage(
input_tokens=get_from_dict(
g.message.response_metadata,
"usage.prompt_tokens",
0,
),
output_tokens=get_from_dict(
g.message.response_metadata,
"usage.completion_tokens",
0,
),
)
)

return sum(token_usages, TokenUsage(input_tokens=0, output_tokens=0))
return TokenUsage(input_tokens=0, output_tokens=0)


class CostCallbackHandler(BaseCallbackHandler):
def __init__(self, token_usage_parser: TokenUsageParser):
self.token_usage_parser = token_usage_parser
Expand Down
1 change: 1 addition & 0 deletions src/ragas/integrations/swarm.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import json
from typing import Any, Dict, List, Union

from ragas.messages import AIMessage, HumanMessage, ToolCall, ToolMessage


Expand Down
2 changes: 1 addition & 1 deletion src/ragas/llms/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,7 +182,7 @@ def is_finished(self, response: LLMResult) -> bool:
elif resp_message.response_metadata.get("stop_reason") is not None:
stop_reason = resp_message.response_metadata.get("stop_reason")
is_finished_list.append(
stop_reason in ["end_turn", "STOP", "MAX_TOKENS"]
stop_reason in ["end_turn", "stop", "STOP", "MAX_TOKENS"]
)
# default to True
else:
Expand Down
29 changes: 14 additions & 15 deletions src/ragas/prompt/pydantic_prompt.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,10 @@
from __future__ import annotations

import copy
import hashlib
import json
import logging
import os
import hashlib

import typing as t

from langchain_core.exceptions import OutputParserException
Expand Down Expand Up @@ -228,7 +227,7 @@ async def adapt(
"""
Adapt the prompt to a new language.
"""

strings = get_all_strings(self.examples)
translated_strings = await translate_statements_prompt.generate(
llm=llm,
Expand Down Expand Up @@ -275,7 +274,7 @@ def __str__(self):
ensure_ascii=False,
)[1:-1]
return f"{self.__class__.__name__}({json_str})"

def __hash__(self):
# convert examples to json string for hashing
examples = []
Expand All @@ -284,23 +283,23 @@ def __hash__(self):
examples.append(
(input_model.model_dump_json(), output_model.model_dump_json())
)

# create a SHA-256 hash object
hasher = hashlib.sha256()

# update the hash object with the bytes of each attribute
hasher.update(self.name.encode('utf-8'))
hasher.update(self.input_model.__name__.encode('utf-8'))
hasher.update(self.output_model.__name__.encode('utf-8'))
hasher.update(self.instruction.encode('utf-8'))
hasher.update(self.name.encode("utf-8"))
hasher.update(self.input_model.__name__.encode("utf-8"))
hasher.update(self.output_model.__name__.encode("utf-8"))
hasher.update(self.instruction.encode("utf-8"))
for example in examples:
hasher.update(example[0].encode('utf-8'))
hasher.update(example[1].encode('utf-8'))
hasher.update(self.language.encode('utf-8'))
hasher.update(example[0].encode("utf-8"))
hasher.update(example[1].encode("utf-8"))
hasher.update(self.language.encode("utf-8"))

# return the integer value of the hash
return int(hasher.hexdigest(), 16)

def __eq__(self, other):
if not isinstance(other, PydanticPrompt):
return False
Expand Down
59 changes: 57 additions & 2 deletions tests/unit/test_cost.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
CostCallbackHandler,
TokenUsage,
get_token_usage_for_anthropic,
get_token_usage_for_bedrock,
get_token_usage_for_openai,
)

Expand Down Expand Up @@ -62,7 +63,7 @@ def test_token_usage_cost():
},
)

athropic_llm_result = LLMResult(
anthropic_llm_result = LLMResult(
generations=[
[
ChatGeneration(
Expand All @@ -82,16 +83,70 @@ def test_token_usage_cost():
llm_output={},
)

bedrock_llama_result = LLMResult(
generations=[
[
ChatGeneration(
text="Hello, world!",
message=AIMessage(
content="Hello, world!",
response_metadata={
"usage": {
"prompt_tokens": 10,
"completion_tokens": 10,
"total_tokens": 20,
},
"stop_reason": "stop",
"model_id": "us.meta.llama3-1-70b-instruct-v1:0",
},
),
)
]
],
llm_output={},
)

bedrock_claude_result = LLMResult(
generations=[
[
ChatGeneration(
text="Hello, world!",
message=AIMessage(
content="Hello, world!",
response_metadata={
"usage": {
"prompt_tokens": 10,
"completion_tokens": 10,
"total_tokens": 20,
},
"stop_reason": "end_turn",
"model_id": "us.anthropic.claude-3-5-sonnet-20240620-v1:0",
},
),
)
]
],
llm_output={},
)


def test_parse_llm_results():
# openai
token_usage = get_token_usage_for_openai(openai_llm_result)
assert token_usage == TokenUsage(input_tokens=10, output_tokens=10)

# anthropic
token_usage = get_token_usage_for_anthropic(athropic_llm_result)
token_usage = get_token_usage_for_anthropic(anthropic_llm_result)
assert token_usage == TokenUsage(input_tokens=9, output_tokens=12)

# Bedrock LLaMa
token_usage = get_token_usage_for_bedrock(bedrock_llama_result)
assert token_usage == TokenUsage(input_tokens=10, output_tokens=10)

# Bedrock Claude
token_usage = get_token_usage_for_bedrock(bedrock_claude_result)
assert token_usage == TokenUsage(input_tokens=10, output_tokens=10)


def test_cost_callback_handler():
cost_cb = CostCallbackHandler(token_usage_parser=get_token_usage_for_openai)
Expand Down
Loading