-
Notifications
You must be signed in to change notification settings - Fork 380
Add MAIR datasets #2363
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
sunnweiwei
wants to merge
13
commits into
embeddings-benchmark:main
Choose a base branch
from
sunnweiwei:main
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Add MAIR datasets #2363
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Samoed
reviewed
Mar 14, 2025
Also, add benchmarks to include these datasets |
Samoed
requested changes
Mar 15, 2025
__all__ = [] | ||
|
||
|
||
TASK2SPLIT = {'Competition-Math': ['queries'], 'ProofWiki_Proof': ['queries'], 'ProofWiki_Reference': ['queries'], 'Stacks_Proof': ['queries'], 'Stacks_Reference': ['queries'], 'Stein_Proof': ['queries'], 'Stein_Reference': ['queries'], 'Trench_Proof': ['queries'], 'Trench_Reference': ['queries'], 'TAD': ['queries'], 'TAS2': ['queries'], 'StackMathQA': ['queries'], 'APPS': ['queries'], 'CodeEditSearch': ['queries'], 'CodeSearchNet': ['queries'], 'Conala': ['queries'], 'HumanEval-X': ['queries'], 'LeetCode': ['queries'], 'MBPP': ['queries'], 'RepoBench': ['queries'], 'TLDR': ['queries'], 'SWE-Bench-Lite': ['astropy__astropy_12544_queries', 'astropy__astropy_13158_queries', 'astropy__astropy_13162_queries', 'astropy__astropy_13398_queries', 'astropy__astropy_13438_queries', 'astropy__astropy_14439_queries', 'astropy__astropy_14701_queries', 'astropy__astropy_14966_queries', 'astropy__astropy_7441_queries', 'astropy__astropy_8707_queries', 'django__django_11501_queries', 'django__django_12091_queries', 'django__django_13192_queries', 'django__django_13218_queries', 'django__django_13884_queries', 'django__django_14441_queries', 'django__django_15481_queries', 'django__django_15869_queries', 'django__django_16901_queries', 'django__django_17065_queries', 'matplotlib__matplotlib_20518_queries', 'matplotlib__matplotlib_23314_queries', 'matplotlib__matplotlib_23913_queries', 'matplotlib__matplotlib_24627_queries', 'matplotlib__matplotlib_24849_queries', 'matplotlib__matplotlib_25027_queries', 'matplotlib__matplotlib_25238_queries', 'matplotlib__matplotlib_25404_queries', 'matplotlib__matplotlib_25430_queries', 'matplotlib__matplotlib_25746_queries', 'mwaskom__seaborn_2389_queries', 'mwaskom__seaborn_2576_queries', 'mwaskom__seaborn_2766_queries', 'mwaskom__seaborn_2813_queries', 'mwaskom__seaborn_2853_queries', 'mwaskom__seaborn_2946_queries', 'mwaskom__seaborn_2979_queries', 'mwaskom__seaborn_2996_queries', 'mwaskom__seaborn_3202_queries', 'mwaskom__seaborn_3407_queries', 'pallets__flask_4045_queries', 'pallets__flask_4074_queries', 'pallets__flask_4160_queries', 'pallets__flask_4169_queries', 'pallets__flask_4544_queries', 'pallets__flask_4575_queries', 'pallets__flask_4642_queries', 'pallets__flask_4992_queries', 'pallets__flask_5014_queries', 'pallets__flask_5063_queries', 'psf__requests_1537_queries', 'psf__requests_1713_queries', 'psf__requests_1733_queries', 'psf__requests_1766_queries', 'psf__requests_2193_queries', 'psf__requests_2466_queries', 'psf__requests_2821_queries', 'psf__requests_3362_queries', 'psf__requests_5414_queries', 'psf__requests_863_queries', 'pydata__xarray_4339_queries', 'pydata__xarray_4767_queries', 'pydata__xarray_4827_queries', 'pydata__xarray_4911_queries', 'pydata__xarray_4966_queries', 'pydata__xarray_5033_queries', 'pydata__xarray_5682_queries', 'pydata__xarray_6135_queries', 'pydata__xarray_6461_queries', 'pydata__xarray_7391_queries', 'pylint_dev__pylint_4398_queries', 'pylint_dev__pylint_4604_queries', 'pylint_dev__pylint_5175_queries', 'pylint_dev__pylint_5446_queries', 'pylint_dev__pylint_5613_queries', 'pylint_dev__pylint_6358_queries', 'pylint_dev__pylint_6412_queries', 'pylint_dev__pylint_6556_queries', 'pylint_dev__pylint_8281_queries', 'pylint_dev__pylint_8757_queries', 'pytest_dev__pytest_10371_queries', 'pytest_dev__pytest_11047_queries', 'pytest_dev__pytest_11148_queries', 'pytest_dev__pytest_5356_queries', 'pytest_dev__pytest_6680_queries', 'pytest_dev__pytest_7158_queries', 'pytest_dev__pytest_7352_queries', 'pytest_dev__pytest_9064_queries', 'pytest_dev__pytest_9279_queries', 'scikit_learn__scikit_learn_10198_queries', 'scikit_learn__scikit_learn_10803_queries', 'scikit_learn__scikit_learn_10949_queries', 'scikit_learn__scikit_learn_11333_queries', 'scikit_learn__scikit_learn_11635_queries', 'scikit_learn__scikit_learn_12827_queries', 'scikit_learn__scikit_learn_12834_queries', 'scikit_learn__scikit_learn_13302_queries', 'scikit_learn__scikit_learn_13392_queries', 'scikit_learn__scikit_learn_13779_queries', 'sphinx_doc__sphinx_11312_queries', 'sphinx_doc__sphinx_11502_queries', 'sphinx_doc__sphinx_7356_queries', 'sphinx_doc__sphinx_7590_queries', 'sphinx_doc__sphinx_7757_queries', 'sphinx_doc__sphinx_7831_queries', 'sphinx_doc__sphinx_8125_queries', 'sphinx_doc__sphinx_8863_queries', 'sphinx_doc__sphinx_9309_queries', 'sphinx_doc__sphinx_9828_queries', 'sympy__sympy_13091_queries', 'sympy__sympy_14817_queries', 'sympy__sympy_14821_queries', 'sympy__sympy_15151_queries', 'sympy__sympy_15933_queries', 'sympy__sympy_16493_queries', 'sympy__sympy_16858_queries', 'sympy__sympy_17251_queries', 'sympy__sympy_18532_queries', 'sympy__sympy_20212_queries'], 'Apple': ['queries'], 'ConvFinQA': ['queries'], 'FinQA': ['queries'], 'FinanceBench': ['queries'], 'HC3Finance': ['queries'], 'TAT-DQA': ['queries'], 'Trade-the-event': ['queries'], 'AY2': ['queries'], 'ELI5': ['queries'], 'Fever': ['queries'], 'TREx': ['queries'], 'WnCw': ['queries'], 'WnWi': ['queries'], 'WoW': ['queries'], 'zsRE': ['queries'], 'AILA2019-Case': ['queries'], 'AILA2019-Statutes': ['queries'], 'BSARD': ['queries'], 'BillSum': ['queries'], 'CUAD': ['GOOSEHEADINSURANCE_queries', 'GRANTIERRAENERGY_queries', 'HarpoonTherapeutics_queries', 'Monsanto_Company_queries'], 'GerDaLIR': ['queries'], 'LeCaRDv2': ['queries'], 'LegalQuAD': ['queries'], 'REGIR-EU2UK': ['queries'], 'REGIR-UK2EU': ['queries'], 'ArguAna': ['queries'], 'CQADupStack': ['CQADupStack_Android_queries', 'CQADupStack_English_queries', 'CQADupStack_Gaming_queries', 'CQADupStack_Gis_queries', 'CQADupStack_Math_queries', 'CQADupStack_Physics_queries', 'CQADupStack_Programmers_queries', 'CQADupStack_Stats_queries', 'CQADupStack_Tex_queries', 'CQADupStack_Unix_queries', 'CQADupStack_WebMasters_queries', 'CQADupStack_Wordpress_queries'], 'FiQA': ['queries'], 'NFCorpus': ['queries'], 'Quora': ['queries'], 'SciDocs': ['queries'], 'SciFact': ['queries'], 'TopiOCQA': ['queries'], 'Touche': ['queries'], 'Trec-Covid': ['queries'], 'ACORDAR': ['queries'], 'CPCD': ['queries'], 'ChroniclingAmericaQA': ['queries'], 'Monant': ['queries'], 'NTCIR': ['queries'], 'PointRec': ['queries'], 'ProCIS-Dialog': ['queries'], 'ProCIS-Turn': ['queries'], 'QuanTemp': ['queries'], 'WebTableSearch': ['queries'], 'CARE': ['queries'], 'MISeD': ['Bmr006_queries', 'Bro027_queries', 'covid4_queries', 'covid9_queries', 'education4_queries'], 'SParC': ['chinook_1_queries', 'college_2_queries', 'store_1_queries'], 'SParC-SQL': ['chinook_1_queries', 'college_2_queries', 'store_1_queries'], 'Spider': ['chinook_1_queries', 'college_2_queries', 'store_1_queries'], 'Spider-SQL': ['chinook_1_queries', 'college_2_queries', 'store_1_queries'], 'LitSearch': ['queries'], 'CAsT_2019': ['queries'], 'CAsT_2020': ['queries'], 'CAsT_2021': ['queries'], 'CAsT_2022': ['queries'], 'Core_2017': ['queries'], 'Microblog_2011': ['queries'], 'Microblog_2012': ['queries'], 'Microblog_2013': ['queries'], 'Microblog_2014': ['queries'], 'PrecisionMedicine_2017': ['queries'], 'PrecisionMedicine_2018': ['queries'], 'PrecisionMedicine_2019': ['queries'], 'PrecisionMedicine-Article_2019': ['queries'], 'PrecisionMedicine-Article_2020': ['queries'], 'CliniDS_2014': ['queries'], 'CliniDS_2015': ['queries'], 'CliniDS_2016': ['queries'], 'ClinicalTrials_2021': ['queries'], 'ClinicalTrials_2022': ['queries'], 'ClinicalTrials_2023': ['queries'], 'DD_2015': ['queries'], 'DD_2016': ['queries'], 'DD_2017': ['queries'], 'FairRanking_2020': ['queries'], 'FairRanking_2021': ['queries'], 'FairRanking_2022': ['queries'], 'Genomics-AdHoc_2004': ['queries'], 'Genomics-AdHoc_2005': ['queries'], 'Genomics-AdHoc_2006': ['queries'], 'Genomics-AdHoc_2007': ['queries'], 'TREC-Legal_2011': ['queries'], 'NeuCLIR-Tech_2023': ['queries'], 'NeuCLIR_2022': ['queries'], 'NeuCLIR_2023': ['queries'], 'ProductSearch_2023': ['queries'], 'ToT_2023': ['queries'], 'ToT_2024': ['queries'], 'FoodAPI': ['queries'], 'HuggingfaceAPI': ['queries'], 'PytorchAPI': ['queries'], 'SpotifyAPI': ['queries'], 'TMDB': ['queries'], 'TensorAPI': ['queries'], 'ToolBench': ['queries'], 'WeatherAPI': ['queries'], 'ExcluIR': ['queries'], 'Core17': ['queries'], 'News21': ['queries'], 'Robust04': ['queries'], 'InstructIR': ['queries'], 'NevIR': ['queries'], 'IFEval': ['detectable_format__number_bullet_lists_2078_queries', 'detectable_format__number_bullet_lists_102_queries', 'detectable_format__number_bullet_lists_2195_queries', 'detectable_format__number_bullet_lists_2314_queries', 'detectable_format__number_bullet_lists_1934_queries', 'detectable_format__number_bullet_lists_2667_queries', 'detectable_format__number_bullet_lists_1634_queries', 'detectable_format__number_bullet_lists_2100_queries', 'detectable_format__number_bullet_lists_1286_queries', 'detectable_format__number_bullet_lists_2457_queries', 'keywords__letter_frequency_1130_queries', 'keywords__letter_frequency_2107_queries', 'keywords__letter_frequency_1964_queries', 'keywords__letter_frequency_2265_queries', 'detectable_format__constrained_response_3752_queries', 'detectable_format__constrained_response_3755_queries', 'detectable_format__constrained_response_3754_queries', 'detectable_format__constrained_response_3753_queries', 'detectable_format__constrained_response_227_queries', 'detectable_format__constrained_response_3749_queries', 'detectable_format__constrained_response_3756_queries', 'detectable_format__constrained_response_3751_queries', 'detectable_format__constrained_response_3750_queries', 'detectable_format__constrained_response_3757_queries', 'punctuation__no_comma_2245_queries', 'punctuation__no_comma_1107_queries', 'punctuation__no_comma_1162_queries', 'punctuation__no_comma_1418_queries', 'punctuation__no_comma_1001_queries', 'punctuation__no_comma_1187_queries', 'punctuation__no_comma_1738_queries', 'punctuation__no_comma_1300_queries', 'punctuation__no_comma_2069_queries', 'punctuation__no_comma_1643_queries', 'keywords__existence_3156_queries', 'keywords__existence_2485_queries', 'keywords__existence_1531_queries', 'keywords__existence_3732_queries', 'keywords__existence_2662_queries', 'change_case__english_capital_2341_queries', 'change_case__english_capital_3186_queries', 'change_case__english_capital_2563_queries', 'change_case__english_capital_1999_queries', 'change_case__english_capital_24_queries', 'change_case__english_capital_1645_queries', 'change_case__english_lowercase_1122_queries', 'change_case__english_lowercase_1361_queries', 'change_case__english_lowercase_1019_queries', 'change_case__english_lowercase_1087_queries', 'change_case__english_lowercase_1667_queries', 'change_case__english_lowercase_1516_queries', 'change_case__english_lowercase_1535_queries', 'change_case__english_lowercase_1593_queries', 'change_case__english_lowercase_1843_queries', 'keywords__frequency_1393_queries', 'keywords__frequency_1733_queries', 'keywords__frequency_2142_queries', 'keywords__frequency_2292_queries', 'keywords__frequency_1498_queries', 'keywords__frequency_1203_queries', 'keywords__frequency_1857_queries', 'length_constraints__number_sentences_1837_queries', 'length_constraints__number_sentences_2674_queries', 'length_constraints__number_sentences_2617_queries', 'length_constraints__number_sentences_1381_queries', 'length_constraints__number_sentences_2266_queries', 'length_constraints__number_sentences_1268_queries', 'length_constraints__number_sentences_179_queries', 'length_constraints__number_paragraphs_1236_queries', 'length_constraints__number_paragraphs_2941_queries', 'length_constraints__number_paragraphs_1248_queries', 'length_constraints__number_paragraphs_1858_queries', 'length_constraints__number_paragraphs_1377_queries', 'length_constraints__number_paragraphs_2357_queries', 'length_constraints__number_paragraphs_2921_queries', 'length_constraints__number_paragraphs_1082_queries', 'length_constraints__number_paragraphs_2467_queries', 'combination__two_responses_1591_queries', 'combination__two_responses_1793_queries', 'combination__two_responses_2912_queries', 'combination__two_responses_1332_queries', 'combination__two_responses_2383_queries', 'combination__two_responses_136_queries', 'combination__two_responses_1098_queries', 'combination__two_responses_1746_queries', 'combination__two_responses_247_queries', 'combination__two_responses_2918_queries', 'detectable_content__postscript_2273_queries', 'detectable_content__postscript_2070_queries', 'detectable_content__postscript_1800_queries', 'detectable_content__postscript_1305_queries', 'detectable_content__postscript_1759_queries', 'detectable_content__postscript_1367_queries', 'detectable_content__postscript_1537_queries', 'detectable_content__postscript_1879_queries', 'detectable_content__postscript_1246_queries', 'detectable_content__postscript_1620_queries', 'startend__end_checker_2398_queries', 'startend__end_checker_1902_queries', 'startend__end_checker_2268_queries', 'startend__end_checker_1659_queries', 'startend__end_checker_1893_queries', 'startend__end_checker_2475_queries', 'startend__end_checker_1128_queries', 'startend__end_checker_1939_queries', 'startend__end_checker_1446_queries', 'startend__end_checker_1220_queries', 'detectable_content__number_placeholders_3280_queries', 'detectable_content__number_placeholders_1372_queries', 'detectable_content__number_placeholders_3221_queries', 'detectable_content__number_placeholders_1927_queries', 'detectable_content__number_placeholders_3126_queries', 'detectable_content__number_placeholders_2164_queries', 'detectable_content__number_placeholders_2136_queries', 'detectable_content__number_placeholders_2304_queries', 'detectable_content__number_placeholders_3743_queries', 'length_constraints__number_words_2323_queries', 'length_constraints__number_words_1072_queries', 'length_constraints__number_words_1258_queries', 'length_constraints__number_words_1251_queries', 'length_constraints__number_words_164_queries', 'detectable_format__number_highlighted_sections_168_queries', 'detectable_format__number_highlighted_sections_1237_queries', 'detectable_format__number_highlighted_sections_1601_queries', 'detectable_format__number_highlighted_sections_167_queries', 'detectable_format__number_highlighted_sections_1773_queries', 'detectable_format__number_highlighted_sections_1646_queries', 'detectable_format__number_highlighted_sections_1379_queries', 'detectable_format__number_highlighted_sections_1307_queries', 'detectable_format__number_highlighted_sections_1886_queries', 'detectable_format__number_highlighted_sections_1644_queries', 'detectable_format__json_format_1094_queries', 'detectable_format__json_format_1148_queries', 'detectable_format__json_format_1137_queries', 'detectable_format__json_format_1075_queries', 'detectable_format__json_format_2857_queries', 'detectable_format__json_format_3223_queries', 'detectable_format__json_format_2404_queries', 'detectable_format__json_format_321_queries', 'detectable_format__json_format_13_queries', 'change_case__capital_word_frequency_2820_queries', 'change_case__capital_word_frequency_2849_queries', 'change_case__capital_word_frequency_2870_queries', 'change_case__capital_word_frequency_1592_queries', 'detectable_format__multiple_sections_2023_queries', 'detectable_format__multiple_sections_1548_queries', 'detectable_format__multiple_sections_2925_queries', 'detectable_format__multiple_sections_1131_queries', 'detectable_format__multiple_sections_357_queries', 'startend__quotation_2015_queries', 'startend__quotation_219_queries', 'startend__quotation_2010_queries', 'startend__quotation_1658_queries', 'startend__quotation_1325_queries', 'startend__quotation_1776_queries', 'startend__quotation_2239_queries', 'startend__quotation_1845_queries', 'startend__quotation_2209_queries', 'length_constraints__nth_paragraph_first_word_2880_queries', 'length_constraints__nth_paragraph_first_word_181_queries', 'length_constraints__nth_paragraph_first_word_2250_queries', 'length_constraints__nth_paragraph_first_word_2215_queries', 'length_constraints__nth_paragraph_first_word_3073_queries', 'length_constraints__nth_paragraph_first_word_2590_queries', 'length_constraints__nth_paragraph_first_word_3624_queries', 'length_constraints__nth_paragraph_first_word_1954_queries', 'detectable_format__title_1262_queries', 'detectable_format__title_2229_queries', 'detectable_format__title_295_queries', 'detectable_format__title_2097_queries', 'detectable_format__title_1802_queries', 'detectable_format__title_1322_queries', 'detectable_format__title_2969_queries', 'detectable_format__title_3057_queries', 'detectable_format__title_1551_queries', 'detectable_format__title_2807_queries']} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
In mteb we've already have apps and CodeEditSearch, NFcorpus. Can you compare your tasks with existing? Also, I think these dayasets have different citations and you should include them
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Add all 126 datasets introduced in https://arxiv.org/abs/2410.10127.
PS This is an updated pull request, as the previous one is outdated.
Code Quality
make lint
to maintain consistent style.Documentation
Testing
make test-with-coverage
.make test
ormake test-with-coverage
to ensure no existing functionality is broken.Adding datasets checklist
Reason for dataset addition: ...
mteb -m {model_name} -t {task_name}
command.sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
intfloat/multilingual-e5-small
self.stratified_subsampling() under dataset_transform()
make test
.make lint
.Adding a model checklist
mteb.get_model(model_name, revision)
andmteb.get_model_meta(model_name, revision)