Skip to content

Official Implementation of CVPR 2017 Oral paper "Deep 360 Pilot: Learning a Deep Agent for Piloting through 360◦ Sports Videos"

Notifications You must be signed in to change notification settings

eborboihuc/Deep360Pilot-CVPR17

Repository files navigation

Deep 360 Pilot: Learning a Deep Agent for Piloting through 360° Sports Videos

Hou-Ning Hu*, Yen-Chen Lin*, Ming-Yu Liu, Hsien-Tzu Cheng, Yung-Ju Chang, Min Sun (*indicate equal contribution)

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (Oral presentation)

Official Implementation of CVPR 2017 Oral paper "Deep 360 Pilot: Learning a Deep Agent for Piloting through 360◦ Sports Videos" in Tensorflow.

Project page: https://aliensunmin.github.io/project/360video/

Paper: High resolution, ArXiv pre-print, Open access

Prerequisites

  • Linux
  • NVIDIA GPU + CUDA 8.0 + CuDNNv5.1
  • Python 2.7 with numpy
  • Tensorflow 1.2.1

Getting Started

  • Change the version you like:

    We provide both 0.12 and 1.2.1 version of Tensorflow implementation You may choose the ideal version to use

  • Clone this repo and another for formating the input data:

git clone http://github.com/eborboihuc/Deep360Pilot-CVPR17.git

cd Deep360Pilot/misc

git clone http://github.com/yenchenlin/Deep360Pilot-optical-flow.git

After run the scripts you will see multiple links

python require.py

Please download our model and dataset and place it under ./checkpoint and ./data, respectively.

Usage

To train a model with downloaded dataset:

python main.py --mode train --gpu 0 -d bmx -l 10 -b 16 -p classify --opt Adam

Then

python main.py --mode train --gpu 0 -d bmx -l 10 -b 16 -p regress --opt Adam --model checkpoint/bmx_16boxes_lam10.0/bmx_lam1_classify_best_model

To test with an existing model:

python main.py --mode test --gpu 0 -d bmx -l 10 -b 16 -p classify --model checkpoint/bmx_16boxes_lam10.0/bmx_lam1_classify_best_model

Or,

python main.py --mode test --gpu 0 -d bmx -l 10 -b 16 -p regress --model checkpoint/bmx_16boxes_lam10.0/bmx_lam10.0_regress_best_model

To get prediction with an existing model:

python main.py --mode pred --model checkpoint/bmx_16boxes_lam10.0/bmx_lam10.0_regress_best_model --gpu 0 -d bmx -l 10 -b 16 -p regress -n zZ6FlZRLvek_6

Pre-trained Model

Please download the trained model for TensorFlow v1.2.1 here. You can use --model {model_path} in main.py to load the model.

Dataset

Pipeline testing

We provide a small testing clip-based datafile. Please download it here. And you can use this toy datafile to go though our data process pipeline.

Testing on our batch-based dataset for accuracy and smoothness

If you want to reproduce the results on our dataset, please download the dataset here, label here and place it under ./data.

Testing on our clip-based dataset for generating trajectories

Please download the clip-based dataset here And then use code from here to convert it to our input format.

Cite

If you find our code useful for your research, please cite

@InProceedings{Hu_2017_CVPR,
author = {Hu, Hou-Ning and Lin, Yen-Chen and Liu, Ming-Yu and Cheng, Hsien-Tzu and Chang, Yung-Ju and Sun, Min},
title = {Deep 360 Pilot: Learning a Deep Agent for Piloting Through 360deg Sports Videos},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}

Author

Hou-Ning Hu / @eborboihuc and Yen-Chen Lin / @yenchenlin

About

Official Implementation of CVPR 2017 Oral paper "Deep 360 Pilot: Learning a Deep Agent for Piloting through 360◦ Sports Videos"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published