Skip to content
This repository has been archived by the owner on May 17, 2023. It is now read-only.

Commit

Permalink
Merge pull request #2 from raybuhr/master
Browse files Browse the repository at this point in the history
Added Resources section and W251 content
  • Loading branch information
Chris Walker committed Mar 1, 2016
2 parents f9dc2d9 + a2187f4 commit 8b3486f
Show file tree
Hide file tree
Showing 11 changed files with 888 additions and 0 deletions.
29 changes: 29 additions & 0 deletions Resources/Cloud Computing/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
# Cloud Computing (Really just AWS)

[s3.cmds {AWS.tools} | inside-R | A Community Site for R](http://www.inside-r.org/packages/cran/AWS.tools/docs/s3.cmds)

[Running R on AWS - AWS Big Data Blog](https://blogs.aws.amazon.com/bigdata/post/Tx3IJSB6BMHWZE5/Running-R-on-AWS)

[AWS SSH2](https://github.com/soheil/ssh2/blob/master/README.md)

[Amazon Web Services Sign-In](https://signin.aws.amazon.com/oauth?SignatureVersion=4&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJMOATPLHVSJ563XQ&X-Amz-Date=2015-08-26T20%3A25%3A36.839Z&X-Amz-Signature=14248361ce27cd289faefe294a4d63f811768031c87c0f1e870d7a089df26720&X-Amz-SignedHeaders=host&client_id=arn%3Aaws%3Aiam%3A%3A015428540659%3Auser%2Fhomepage&redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fconsole%2Fhome%3Fstate%3DhashArgs%2523%26isauthcode%3Dtrue&response_type=code&state=hashArgs%23)

[awslabs/aws-shell](https://github.com/awslabs/aws-shell)

[AWS | Start-Ups - Cloud Computing for Small Business](https://aws.amazon.com/start-ups/?nc2=h_ql_ny_livestream_blu)

[AWS in Plain English](https://www.expeditedssl.com/aws-in-plain-english)

[Supported Google APIs | API Client Library for Python | Google Developers](https://developers.google.com/api-client-library/python/apis/)

[API Client Library for Python | Google Developers](https://developers.google.com/api-client-library/python/start/get_started)

[AWS CLI - Using High-Level s3 Commands with the AWS Command Line Interface - AWS Command Line Interface](http://docs.aws.amazon.com/cli/latest/userguide/using-s3-commands.html)

[GitHub - donnemartin/saws: A supercharged AWS command line interface (CLI). http://bit.ly/git-saws](https://github.com/donnemartin/saws)

[Command Line Crash Course](http://cli.learncodethehardway.org/book/)

[takluyver/bash\_kernel: A bash kernel for IPython](https://github.com/takluyver/bash_kernel)

[s3 — AWS CLI 1.7.4 documentation](http://docs.aws.amazon.com/cli/latest/reference/s3/index.html)
129 changes: 129 additions & 0 deletions Resources/Data Science/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# Data Science

This list still needs to be organized into categories.

[16+ Free Data Science Books](http://www.wzchen.com/data-science-books/)

[20 short tutorials all data scientists should read (and practice) - Data Science Central](http://www.datasciencecentral.com/profiles/blogs/17-short-tutorials-all-data-scientists-should-read-and-practice)

[5 Major Differences Between Tactical and Strategic Intelligence | Chron.com](http://smallbusiness.chron.com/5-major-differences-between-tactical-strategic-intelligence-18117.html)

[51 Free Data Science Books](http://listsplosion.com/post/128730920608/free-data-science-books)

[62 new external resources and articles about data science, big data - January 23 - Data Science Central](http://www.datasciencecentral.com/profiles/blogs/51-new-external-resources-and-articles-about-data-science-big)

[7 command-line tools for data science](http://jeroenjanssens.com/2013/09/19/seven-command-line-tools-for-data-science.html)

[ACH - Competing Hypotheses](http://www.competinghypotheses.org/docs/Sample_Projects)

[apache spark - How to set up Zeppelin to work with remote EMR Yarn cluster - Stack Overflow](http://stackoverflow.com/questions/32593326/how-to-set-up-zeppelin-to-work-with-remote-emr-yarn-cluster)

[Apache Spark installation + ipython notebook integration guide for Mac OS X](https://gist.github.com/ololobus/4c221a0891775eaa86b0)

[Big Data University](http://bigdatauniversity.com/)

[caesar0301/awesome-public-datasets](https://github.com/caesar0301/awesome-public-datasets)

[CCP: Data Scientist](http://www.cloudera.com/content/cloudera/en/training/certification/ccp-ds.html)

[CIVIC TECH VOICES](http://civictechvoices.tumblr.com/)

[Comprehensive list of data science resources - Data Science Central](http://www.datasciencecentral.com/group/resources/forum/topics/comprehensive-list-of-data-science-resources)

[Data Science 101 | Learning To Be A Data Scientist](http://datascience101.wordpress.com/)

[Data Science at the Command Line](http://datascienceatthecommandline.com/)

[Data Science Toolbox](http://datasciencetoolbox.org/)

[data scientists tools](http://www.techrepublic.com/blog/big-data-analytics/data-scientists-can-find-big-money-in-open-source/#.)

[Dataphoric: Learn Data Science the Hard Way](http://www.dataphoric.com/2015/06/27/learn_data_science_the_hard_way/)

[DataPyR - curated collection of resources for data science](https://datapyr.zeef.com/kranthi.kumar)

[Divvy | Your bike sharing system in Chicago](http://www.divvybikes.com/datachallenge)

[DIY Fantasy Football Strategy](http://www.vividnumeral.com/content/projects/ff_rank/)

[Edwin Chen's Blog](http://blog.echen.me/)

[Exploratory Data Analysis… by Roger D. Peng [PDF/iPad/Kindle]](https://leanpub.com/exdata?utm_source=coursera&utm_campaign=Coursera&utm_medium=CourseraEmail)

[Extracting text from an image using Ocropus](http://www.danvk.org/2015/01/09/extracting-text-from-an-image-using-ocropus.html)

[Fallacies](http://www.nizkor.org/features/fallacies/)

[Four great data science, big data, and deep machine learning books – AnalyticBridge](http://www.analyticbridge.com/m/group/discussion?id=2004291%3ATopic%3A315062)

[Freakonometrics | An Open Lab-Notebook Experiment](http://freakonometrics.hypotheses.org/)

[Hilarious Lecture on Bad Science](http://authoritynutrition.com/tom-naughton-bad-science/)

[Hortonworks Sandbox](http://hortonworks.com/products/hortonworks-sandbox/#tutorial_gallery)

[How to bring better ethics to data science.](http://www.slate.com/articles/technology/future_tense/2016/02/how_to_bring_better_ethics_to_data_science.html)

[How to Convert an SQL Server Data into JSON Object - CodeProject](http://www.codeproject.com/Tips/773903/How-to-Convert-an-SQL-Server-Data-into-JSON-Object)

[How to turn your predictive models into APIs Using Domino | ProgrammableWeb](http://www.programmableweb.com/news/how-to-turn-your-predictive-models-apis-using-domino/how-to/2015/07/22?page=2)

[IBash Notebook‽](http://jeroenjanssens.com/2015/02/19/ibash-notebook.html)

[Intel-bigdata/spark-streamingsql · GitHub](https://github.com/Intel-bigdata/spark-streamingsql)

[Introducing LINQ—Language Integrated Query - CodeProject](http://www.codeproject.com/Articles/199060/Introducing-LINQ-Language-Integrated-Query)

[Introduction | Databricks Spark Reference Applications](https://databricks.gitbooks.io/databricks-spark-reference-applications/content/index.html)

[Introduction to Data Science | Coursera](https://www.coursera.org/course/datasci)

[Introduction to Data Science with R - O’Reilly Media](http://player.oreilly.com/videos/9781491911969?toc_id=192701&cmp=pe-data-books-videos-product-na_dsc_email_apr21)

[JuliaBox](https://www.juliabox.org/)

[Learn Data Science by nborwankar](http://nborwankar.github.io/LearnDataScience/)

[Lectures and Labs | How to Process, Analyze and Visualize Data | MIT OpenCourseWare](http://ocw.mit.edu/resources/res-6-009-how-to-process-analyze-and-visualize-data-january-iap-2012/lectures-and-labs/)

[Machine Learning Meets Economics](http://mldb.ai/blog/posts/2016/01/ml-meets-economics/)

[Mode - Playbook](http://about.modeanalytics.com/playbook/)

[Mode Analytics Browser](https://modeanalytics.com/editor/reports/eb75d37d94a3/runs/6e1d1171f17f)

[NASA Launches Earth Science Challenges with OpenNEX Cloud Data | NASA](http://www.nasa.gov/press/2014/june/nasa-launches-earth-science-challenges-with-opennex-cloud-data/#.U7SzZxW9KK1)

[numeroteca » Newspaper Front Page Analysis: How Do They Tell the Story?](http://numeroteca.org/2013/06/18/newspaper-front-page-analysis-how-do-they-tell-the-story/)

[Online JSON Viewer](http://jsonviewer.stack.hu/)

[Quartz bad data guide](https://github.com/Quartz/bad-data-guide/blob/master/README.md)

[Resources | CS 194-16: Introduction to Data Science](http://datascienc.es/resources/)

[The Belmont Report | HHS.gov](http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html)

[The Data Science Toolkit - My Boot Camp Ciriculum - Data Science Central](http://www.datasciencecentral.com/profiles/blogs/the-data-science-toolkit-my-boot-camp-ciriculum)

[The Open Source Data Science Masters](http://datasciencemasters.org/)

[Top 20 Data Science MOOCs](http://www.kdnuggets.com/2015/09/top-20-data-science-moocs.html#.VeuQRqEaFIg.linkedin)

[Udacity - Data Science](https://www.udacity.com/courses#!/data-science)

[UNIX Tutorial - UC Berkeley School of Information](http://people.ischool.berkeley.edu/~kevin/unix-tutorial/)

[Useful Unix commands for data science](http://www.gregreda.com/2013/07/15/unix-commands-for-data-science/)

[Vagrant + Spark + Zeppelin a Toolbox to the Data Analyst (or Data Scientist) - Mutable Ideas](http://arjon.es/2015/08/23/vagrant-spark-zeppelin-a-toolbox-to-the-data-analyst/)

[Visual Information Theory -- colah's blog](http://colah.github.io/posts/2015-09-Visual-Information/)

[What Is Data Science? What is a Data Scientist? What is Analytics?](https://datajobs.com/what-is-data-science)

[Wordcount mapreduce example using Hive on local and EMR | Chun](http://www.lichun.cc/blog/2012/06/wordcount-mapreduce-example-using-hive-on-local-and-emr/)

[Zeppelin](https://zeppelin.incubator.apache.org/)

[Zeppelin - Web Based Notebook for SQL, Scala and more](http://zeppelin-project.org/)
46 changes: 46 additions & 0 deletions Resources/Data Visualization/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
# Data Visualization

## Resources:

- Data + Design: Visualization. A good place to start on what to do and what not to do. https://infoactive.co/data-design/part04.html
- Tufte in R. Examples of various statistical plots done in R with minimal chart junk and maximum Tufte style. http://motioninsocial.com/tufte/
- Cookbook for R: Graphs. Tutorials on how to do all the basic charts with ggplot2. http://www.cookbook-r.com/Graphs/
- Matplotlib: plotting with Python. http://matplotlib.org/
- Bokeh: interactive plotting with Python. http://bokeh.pydata.org/en/latest/
- Pyxley: python powered dashboards. http://multithreaded.stitchfix.com/blog/2015/07/16/pyxley/
- Shiny: interactive plotting with R. http://shiny.rstudio.com/
- D3 Tips and Tricks, a free e-book. https://leanpub.com/D3-Tips-and-Tricks

**Tableau Desktop**
- http://www.tableausoftware.com/products/desktop
- http://www.tableausoftware.com/learn/training

**Adobe Illustrator**
- http://www.adobe.com/products/creativecloud/students.edu.html
- https://helpx.adobe.com/creative-cloud/learn/tutorials/illustrator.html

**R and ggplot2**
- http://www.r-project.org
- http://ggplot2.org
- http://wiki.stdout.org/rcookbook/Graphs/


## JavaScript tools

[Chartist - Getting started](https://gionkunz.github.io/chartist-js/getting-started.html)

[nnnick/Chart.js](https://github.com/nnnick/Chart.js)

[Addepar | Ember Charts](http://addepar.github.io/ember-charts/#/overview)

[D3 Tips and Tricks by Malcolm Maclean [Leanpub PDF/iPad/Kindle]](https://leanpub.com/D3-Tips-and-Tricks)

[Datavisualization.ch Selected Tools](http://selection.datavisualization.ch/)

[Python transcrypt to JS](https://github.com/JdeH/Transcrypt/blob/master/README.rst)

[biovisualize.github.io/d3visualization/](http://biovisualize.github.io/d3visualization/)

[C3.js | D3-based reusable chart library](http://c3js.org/examples.html)

[D3.js Tips and Tricks](http://www.d3noob.org/)
37 changes: 37 additions & 0 deletions Resources/Databases/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
# Databases

[minimaxir/big-list-of-naughty-strings · GitHub](https://github.com/minimaxir/big-list-of-naughty-strings?files=1)

[yhat/db.py](https://github.com/yhat/db.py)

[MySQL :: MySQL 5.1 Reference Manual :: 12 Functions and Operators](https://dev.mysql.com/doc/refman/5.1/en/functions.html)

[SQL Tabs](http://www.sqltabs.com/)

[SQL Tabs - postgres editor with charts](http://www.sqltabs.com/doc)

[DBA Skills for developers - CodeProject](http://www.codeproject.com/Articles/1060867/DBA-Skills-for-developers)

[PostgreSQL vs. MS SQL Server](http://www.pg-versus-ms.com/)

[SQL Indexing Tutorial | Use The Index, Luke!](http://use-the-index-luke.com/)

[SQL and NoSQL JOINs | Cloudant](https://cloudant.com/blog/sql-joins/#.VimZUnUVhBd)

[SQL Fundamentals | SoloLearn: Learn to code and more for FREE!](http://www.sololearn.com/Course/SQL/)

[Spark Streaming - Spark 1.5.1 Documentation](https://spark.apache.org/docs/latest/streaming-programming-guide.html)

[Stream Processing w/ Spark Streaming](http://ampcamp.berkeley.edu/3/exercises/realtime-processing-with-spark-streaming.html)

[Terminal Client for MySQL: dbcli/mycli](https://github.com/dbcli/mycli)

[MySQL :: MySQL 5.6 Reference Manual](http://dev.mysql.com/doc/refman/5.6/en/index.html)

[MySQL Cheat Sheet](http://www.cheatography.com/davechild/cheat-sheets/mysql/)

[Robomongo — shell-centric MongoDB management tool (MongoDB Admin UI)](http://robomongo.org/)

[Self Paced Database | Stanford Lagunita](https://lagunita.stanford.edu/courses/DB/2014/SelfPaced/about)

[Installing and Configuring PostgreSQL 9.4 on Linux Mint/Ubuntu - CodeProject](http://www.codeproject.com/Articles/898303/Installing-and-Configuring-PostgreSQL-on-Linux-Min)
8 changes: 8 additions & 0 deletions Resources/ETL/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# ETL

[Deployment and Scheduling of Talend Jobs](http://www.etladvisors.com/2014/05/06/windows-deployment-and-scheduling-of-talend-jobs/)

[spotify/luigi](https://github.com/spotify/luigi)

[Talend Studio and Java requirements for OS X Yosemite (v10.10) users - Talend Knowledge Base - Talend Online Documentation & Knowledge Base](https://help.talend.com/display/KB/Talend+Studio+and+Java+requirements+for+OS+X+Yosemite+(v10.10)+users)

28 changes: 28 additions & 0 deletions Resources/Math/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Math

## TODO

- Need to break into sections, such as Statistics and Linear Algebra
- Organize based on topics and difficulty/level

## Resources

[Notes](http://www.cims.nyu.edu/~cfgranda/pages/DSGA1002_fall15/notes.html)

[3.1. Statistics in Python — Scipy lecture notes](http://www.scipy-lectures.org/packages/statistics/index.html)

[Statistics Done Wrong | No Starch Press](https://www.nostarch.com/statsdonewrong)

[Setosa data visualization and visual explanations](http://setosa.io/#/)

[Statistics Glossary](http://www.stat.berkeley.edu/~stark/SticiGui/Text/gloss.htm)

[What statistical analysis should I use?](http://www.ats.ucla.edu/stat/stata/whatstat/whatstat.htm)

[Statistics variables definitions](http://www.ats.ucla.edu/stat/mult_pkg/whatstat/nominal_ordinal_interval.htm)

[Choosing the Correct Statistical Test](http://www.ats.ucla.edu/stat/mult_pkg/whatstat/)

[etz-etal-preprint-how-to-become-a-bayesian.pdf](https://nicebrain.files.wordpress.com/2016/02/etz-etal-preprint-how-to-become-a-bayesian.pdf)

[Parametric vs. non-parametric tests](http://changingminds.org/explanations/research/analysis/parametric_non-parametric.htm)
41 changes: 41 additions & 0 deletions Resources/Modeling/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# Modeling

[Machine learning resources](https://github.com/ujjwalkarn/Machine-Learning-Tutorials/blob/master/README.md#bayes)

[nbviewer.ipython.org/github/datadave/GADS9-NYC-Spring2014-Lectures/blob/master/lessons/lesson19\_TSA/Introduction\_To\_Time\_Series\_Using\_Python.ipynb](http://nbviewer.ipython.org/github/datadave/GADS9-NYC-Spring2014-Lectures/blob/master/lessons/lesson19_TSA/Introduction_To_Time_Series_Using_Python.ipynb)

[GAM: The Predictive Modeling Silver Bullet | Stitch Fix Technology – Multithreaded](http://multithreaded.stitchfix.com/blog/2015/07/30/gam/)

[Data-Analysis-and-Machine-Learning-Projects/Example Machine Learning Notebook.ipynb at master · rhiever/Data-Analysis-and-Machine-Learning-Projects · GitHub](https://github.com/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb)

[Gerber & Green, FEDAI, 2012 | Institution for Social and Policy Studies](http://isps.yale.edu/FEDAI#.VXf2mc_2C01)

[UCI Machine Learning Repository](http://archive.ics.uci.edu/ml/)

[Machine Learning is Fun! — Medium](https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471)

[50+ Data Science and Machine Learning Cheat Sheets](http://www.kdnuggets.com/2015/07/good-data-science-machine-learning-cheat-sheets.html)

[Character-Based Deep Convolutional Models](http://www.deepdetect.com/applications/text_model/)

[Choosing the right estimator — scikit-learn 0.15.1 documentation](http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html)

[Interactive Periodic Table of Machine Learning Libraries](http://www.mln.io/resources/periodic-table/)

[josephmisiti/awesome-machine-learning](https://github.com/josephmisiti/awesome-machine-learning)

[Machine Learning Week 0: Getting Everything Ready](https://asouthwind.herokuapp.com/ml/machine_learning_wk0_getting_everything_ready.html)

[Machine Learning Week 1, Part 1: Supervised Linear Regression](https://asouthwind.herokuapp.com/ml/machine_learning_wk1_pt1_supervised_linear_regression.html)

[Machine Learning Week 1, Part 1: Supervised Logistic Regression](https://asouthwind.herokuapp.com/ml/machine_learning_wk1_pt1_supervised_logistic_regression.html)

[PyMC documentation](https://pymc-devs.github.io/pymc/tutorial.html#an-example-statistical-model)

[Random Forest in scikit-learn | alexhwoods](http://alexhwoods.com/2015/07/01/random-forest-in-scikit-learn/)

[Sentiment Analysis, Opinion Extraction](http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon)

[Slender Means: Machine Learning for Hackers in Python!](http://slendermeans.org/pages/will-it-python.html)

[tensorflow github](https://github.com/tensorflow/tensorflow)
Loading

0 comments on commit 8b3486f

Please sign in to comment.