forked from GDUTCPSDL/caffe_draw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_log.py
201 lines (152 loc) · 6.67 KB
/
parse_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!/usr/bin/env python
"""
Parse training log
Evolved from parse_log.sh
"""
import os
import re
import extract_seconds
import argparse
import csv
from collections import OrderedDict
def parse_log(path_to_log):
"""Parse log file
Returns (train_dict_list, train_dict_names, test_dict_list, test_dict_names)
train_dict_list and test_dict_list are lists of dicts that define the table
rows
train_dict_names and test_dict_names are ordered tuples of the column names
for the two dict_lists
"""
regex_iteration = re.compile('Iteration (\d+)')
regex_train_output = re.compile('Train net output #(\d+): (\S+) = ([\.\deE+-]+)')
regex_test_output = re.compile('Test net output #(\d+): (\S+) = ([\.\deE+-]+)')
regex_learning_rate = re.compile('lr = ([-+]?[0-9]*\.?[0-9]+([eE]?[-+]?[0-9]+)?)')
# Pick out lines of interest
iteration = -1
learning_rate = float('NaN')
train_dict_list = []
test_dict_list = []
train_row = None
test_row = None
logfile_year = extract_seconds.get_log_created_year(path_to_log)
with open(path_to_log) as f:
start_time = extract_seconds.get_start_time(f, logfile_year)
for line in f:
iteration_match = regex_iteration.search(line)
if iteration_match:
iteration = float(iteration_match.group(1))
if iteration == -1:
# Only start parsing for other stuff if we've found the first
# iteration
continue
time = extract_seconds.extract_datetime_from_line(line,
logfile_year)
seconds = (time - start_time).total_seconds()
learning_rate_match = regex_learning_rate.search(line)
if learning_rate_match:
learning_rate = float(learning_rate_match.group(1))
train_dict_list, train_row = parse_line_for_net_output(
regex_train_output, train_row, train_dict_list,
line, iteration, seconds, learning_rate
)
test_dict_list, test_row = parse_line_for_net_output(
regex_test_output, test_row, test_dict_list,
line, iteration, seconds, learning_rate
)
fix_initial_nan_learning_rate(train_dict_list)
fix_initial_nan_learning_rate(test_dict_list)
return train_dict_list, test_dict_list
def parse_line_for_net_output(regex_obj, row, row_dict_list,
line, iteration, seconds, learning_rate):
"""Parse a single line for training or test output
Returns a a tuple with (row_dict_list, row)
row: may be either a new row or an augmented version of the current row
row_dict_list: may be either the current row_dict_list or an augmented
version of the current row_dict_list
"""
output_match = regex_obj.search(line)
if output_match:
if not row or row['NumIters'] != iteration:
# Push the last row and start a new one
if row:
# If we're on a new iteration, push the last row
# This will probably only happen for the first row; otherwise
# the full row checking logic below will push and clear full
# rows
row_dict_list.append(row)
row = OrderedDict([
('NumIters', iteration),
('Seconds', seconds),
('LearningRate', learning_rate)
])
# output_num is not used; may be used in the future
# output_num = output_match.group(1)
output_name = output_match.group(2)
output_val = output_match.group(3)
row[output_name] = float(output_val)
if row and len(row_dict_list) >= 1 and len(row) == len(row_dict_list[0]):
# The row is full, based on the fact that it has the same number of
# columns as the first row; append it to the list
row_dict_list.append(row)
row = None
return row_dict_list, row
def fix_initial_nan_learning_rate(dict_list):
"""Correct initial value of learning rate
Learning rate is normally not printed until after the initial test and
training step, which means the initial testing and training rows have
LearningRate = NaN. Fix this by copying over the LearningRate from the
second row, if it exists.
"""
if len(dict_list) > 1:
dict_list[0]['LearningRate'] = dict_list[1]['LearningRate']
def save_csv_files(logfile_path, output_dir, train_dict_list, test_dict_list,
delimiter=',', verbose=False):
"""Save CSV files to output_dir
If the input log file is, e.g., caffe.INFO, the names will be
caffe.INFO.train and caffe.INFO.test
"""
log_basename = os.path.basename(logfile_path)
train_filename = os.path.join(output_dir, log_basename + '.train')
write_csv(train_filename, train_dict_list, delimiter, verbose)
test_filename = os.path.join(output_dir, log_basename + '.test')
write_csv(test_filename, test_dict_list, delimiter, verbose)
def write_csv(output_filename, dict_list, delimiter, verbose=False):
"""Write a CSV file
"""
if not dict_list:
if verbose:
print('Not writing %s; no lines to write' % output_filename)
return
dialect = csv.excel
dialect.delimiter = delimiter
with open(output_filename, 'w') as f:
dict_writer = csv.DictWriter(f, fieldnames=dict_list[0].keys(),
dialect=dialect)
dict_writer.writeheader()
dict_writer.writerows(dict_list)
if verbose:
print 'Wrote %s' % output_filename
def parse_args():
description = ('Parse a Caffe training log into two CSV files '
'containing training and testing information')
parser = argparse.ArgumentParser(description=description)
parser.add_argument('logfile_path',
help='Path to log file')
parser.add_argument('output_dir',
help='Directory in which to place output CSV files')
parser.add_argument('--verbose',
action='store_true',
help='Print some extra info (e.g., output filenames)')
parser.add_argument('--delimiter',
default=',',
help=('Column delimiter in output files '
'(default: \'%(default)s\')'))
args = parser.parse_args()
return args
def main():
args = parse_args()
train_dict_list, test_dict_list = parse_log(args.logfile_path)
save_csv_files(args.logfile_path, args.output_dir, train_dict_list,
test_dict_list, delimiter=args.delimiter)
if __name__ == '__main__':
main()