Skip to content

covisionlab/dynamic-label-injection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dynamic Label Injection for Imbalanced Industrial Defect Segmentation (ECCV 2024 Workshops)

This is the official implementation of the paper Dynamic Label Injection for Imbalanced Industrial Defect Segmentation.

DLI

Installation

Create your environment (Conda or Venv) and install the requirements with the following command:

pip install -r requirements.txt

Create MT dataset splits

python src/dsets/MT_gen_split.py --seed 42
                                 --dset_csv ./data/MT_dset/MT_dset.csv
                                 --output_dir ./data/MT_dset/splits

Launch training

python train.py --seed 42
                --config ./configs/MT/hyp.yaml 
                --model [timm-resnest50d,resnet18,mobileone_s1]
                --method [baseline,focal,balanced,wce,dli-cp,dli-p,dli-hh]
                --dli # use it when launching one of dli
                --poisson_prob [0,0.5,1.0] # 0.5 with dli-hh, 1.0 with dli-p, 0 otherwise
                --data_perc [0.1,0.25,0.5,0.75,1.0] # percentage of data in the training set
                --log_every 1 # saving weights after log_every epochs

Citation

Please cite with the following BibTeX:

@inproceedings{caruso2024dynamic,
  title={Dynamic Label Injection for Imbalanced Industrial Defect Segmentation},
  author={Caruso, Emanuele and Pelosin, Francesco and Simoni, Alessandro and Boschetti, Marco},
  booktitle={Proceedings of the European Conference on Computer Vision Workshops},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published