Skip to content

Commit

Permalink
DOC: extract/extractall clarifications
Browse files Browse the repository at this point in the history
This PR clarifies the new documentation for extract and extractall.
It was requested by @jreback in
pandas-dev#11386 (comment)

Author: Toby Dylan Hocking <[email protected]>

Closes pandas-dev#12281 from tdhock/extract-docs and squashes the following commits:

2019d1b [Toby Dylan Hocking] DOC: extract/extractall clarifications
  • Loading branch information
tdhock authored and cldy committed Feb 11, 2016
1 parent cb7ba66 commit 2653e68
Show file tree
Hide file tree
Showing 2 changed files with 28 additions and 28 deletions.
22 changes: 11 additions & 11 deletions doc/source/text.rst
Original file line number Diff line number Diff line change
Expand Up @@ -196,9 +196,9 @@ DataFrame with one column per group.
Elements that do not match return a row filled with ``NaN``. Thus, a
Series of messy strings can be "converted" into a like-indexed Series
or DataFrame of cleaned-up or more useful strings, without
necessitating ``get()`` to access tuples or ``re.match`` objects. The
results dtype always is object, even if no match is found and the
result only contains ``NaN``.
necessitating ``get()`` to access tuples or ``re.match`` objects. The
dtype of the result is always object, even if no match is found and
the result only contains ``NaN``.

Named groups like

Expand Down Expand Up @@ -275,15 +275,16 @@ Extract all matches in each subject (extractall)

.. _text.extractall:

.. versionadded:: 0.18.0

Unlike ``extract`` (which returns only the first match),

.. ipython:: python
s = pd.Series(["a1a2", "b1", "c1"], ["A", "B", "C"])
s
s.str.extract("[ab](?P<digit>\d)", expand=False)
.. versionadded:: 0.18.0
two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'
s.str.extract(two_groups, expand=True)
the ``extractall`` method returns every match. The result of
``extractall`` is always a ``DataFrame`` with a ``MultiIndex`` on its
Expand All @@ -292,30 +293,29 @@ indicates the order in the subject.

.. ipython:: python
s.str.extractall("[ab](?P<digit>\d)")
s.str.extractall(two_groups)
When each subject string in the Series has exactly one match,

.. ipython:: python
s = pd.Series(['a3', 'b3', 'c2'])
s
two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'
then ``extractall(pat).xs(0, level='match')`` gives the same result as
``extract(pat)``.

.. ipython:: python
extract_result = s.str.extract(two_groups, expand=False)
extract_result = s.str.extract(two_groups, expand=True)
extract_result
extractall_result = s.str.extractall(two_groups)
extractall_result
extractall_result.xs(0, level="match")
Testing for Strings that Match or Contain a Pattern
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
---------------------------------------------------

You can check whether elements contain a pattern:

Expand Down Expand Up @@ -355,7 +355,7 @@ Methods like ``match``, ``contains``, ``startswith``, and ``endswith`` take
s4.str.contains('A', na=False)
Creating Indicator Variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
----------------------------

You can extract dummy variables from string columns.
For example if they are separated by a ``'|'``:
Expand Down
34 changes: 17 additions & 17 deletions doc/source/whatsnew/v0.18.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -157,50 +157,50 @@ Currently the default is ``expand=None`` which gives a ``FutureWarning`` and use

.. ipython:: python

pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=None)

Extracting a regular expression with one group returns a ``DataFrame``
with one column if ``expand=True``.
Extracting a regular expression with one group returns a Series if
``expand=False``.

.. ipython:: python

pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)

It returns a Series if ``expand=False``.
It returns a ``DataFrame`` with one column if ``expand=True``.

.. ipython:: python

pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)

Calling on an ``Index`` with a regex with exactly one capture group
returns a ``DataFrame`` with one column if ``expand=True``,
returns an ``Index`` if ``expand=False``.

.. ipython:: python

s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
s
s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)

It returns an ``Index`` if ``expand=False``.

.. ipython:: python

s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)

Calling on an ``Index`` with a regex with more than one capture group
returns a ``DataFrame`` if ``expand=True``.
It returns a ``DataFrame`` with one column if ``expand=True``.

.. ipython:: python

s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)

It raises ``ValueError`` if ``expand=False``.
Calling on an ``Index`` with a regex with more than one capture group
raises ``ValueError`` if ``expand=False``.

.. code-block:: python

>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index

It returns a ``DataFrame`` if ``expand=True``.

.. ipython:: python

s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)

In summary, ``extract(expand=True)`` always returns a ``DataFrame``
with a row for every subject string, and a column for every capture
group.
Expand Down

0 comments on commit 2653e68

Please sign in to comment.