-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
refactor: add init file for easier usage of transformers (#45)
- Loading branch information
1 parent
a1279b4
commit e1edb18
Showing
15 changed files
with
77 additions
and
56 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -56,7 +56,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.datetime_transformer import DurationCalculatorTransformer\n", | ||
"from sk_transformers import DurationCalculatorTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame(\n", | ||
" {\n", | ||
|
@@ -85,7 +85,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.datetime_transformer import TimestampTransformer\n", | ||
"from sk_transformers import TimestampTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [\"1960-01-01\", \"1970-01-01\", \"1990-01-01\"]})\n", | ||
"transformer = TimestampTransformer([\"foo\"])\n", | ||
|
@@ -123,7 +123,7 @@ | |
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"from pytorch_widedeep.datasets import load_adult\n", | ||
"from sk_transformers.deep_transformer import ToVecTransformer\n", | ||
"from sk_transformers import ToVecTransformer\n", | ||
"\n", | ||
"df = load_adult(as_frame=True)\n", | ||
"df[\"target\"] = (df[\"income\"].apply(lambda x: \">50K\" in x)).astype(int)\n", | ||
|
@@ -168,7 +168,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.encoder_transformer import MeanEncoderTransformer\n", | ||
"from sk_transformers import MeanEncoderTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [\"a\", \"b\", \"a\", \"c\", \"b\", \"a\", \"c\", \"a\", \"b\", \"c\"]})\n", | ||
"y = pd.Series([1, 0, 1, 0, 1, 0, 1, 0, 1, 0])\n", | ||
|
@@ -204,7 +204,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.generic_transformer import AggregateTransformer\n", | ||
"from sk_transformers import AggregateTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame(\n", | ||
" {\n", | ||
|
@@ -234,7 +234,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.generic_transformer import ColumnDropperTransformer\n", | ||
"from sk_transformers import ColumnDropperTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [1, 2, 3], \"bar\": [4, 5, 6]})\n", | ||
"transformer = ColumnDropperTransformer([\"foo\"])\n", | ||
|
@@ -259,7 +259,7 @@ | |
"source": [ | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"from sk_transformers.generic_transformer import DtypeTransformer\n", | ||
"from sk_transformers import DtypeTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [1, 2, 3], \"bar\": [\"a\", \"a\", \"b\"]})\n", | ||
"transformer = DtypeTransformer([(\"foo\", np.float32), (\"bar\", \"category\")])\n", | ||
|
@@ -285,7 +285,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.generic_transformer import FunctionsTransformer\n", | ||
"from sk_transformers import FunctionsTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [1, 2, 3], \"bar\": [4, 5, 6]})\n", | ||
"transformer = FunctionsTransformer([(\"foo\", np.log1p, None), (\"bar\", np.sqrt, None)])\n", | ||
|
@@ -309,7 +309,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.generic_transformer import MapTransformer\n", | ||
"from sk_transformers import MapTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [1, 2, 3], \"bar\": [4, 5, 6]})\n", | ||
"transformer = MapTransformer([(\"foo\", lambda x: x + 1)])\n", | ||
|
@@ -335,7 +335,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.generic_transformer import LeftJoinTransformer\n", | ||
"from sk_transformers import LeftJoinTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [\"A\", \"B\", \"C\", \"A\", \"C\"]})\n", | ||
"lookup_df = pd.Series([1, 2, 3], index=[\"A\", \"B\", \"C\"], name=\"values\")\n", | ||
|
@@ -359,7 +359,7 @@ | |
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from sk_transformers.generic_transformer import NaNTransformer\n", | ||
"from sk_transformers import NaNTransformer\n", | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"\n", | ||
|
@@ -389,7 +389,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.generic_transformer import QueryTransformer\n", | ||
"from sk_transformers import QueryTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [1, 8, 3, 6, 5, 4, 7, 2]})\n", | ||
"transformer = QueryTransformer([\"foo > 4\"])\n", | ||
|
@@ -418,7 +418,7 @@ | |
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from sk_transformers.generic_transformer import ValueIndicatorTransformer\n", | ||
"from sk_transformers import ValueIndicatorTransformer\n", | ||
"import pandas as pd\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [1, -999, 3], \"bar\": [\"a\", \"-999\", \"c\"]})\n", | ||
|
@@ -446,7 +446,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.generic_transformer import ValueReplacerTransformer\n", | ||
"from sk_transformers import ValueReplacerTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame(\n", | ||
" {\"foo\": [\"0000-01-01\", \"2022/01/08\", \"bar\", \"1982-12-7\", \"28-09-2022\"]}\n", | ||
|
@@ -492,7 +492,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.number_transformer import MathExpressionTransformer\n", | ||
"from sk_transformers import MathExpressionTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [1, 2, 3], \"bar\": [4, 5, 6]})\n", | ||
"transformer = MathExpressionTransformer([(\"foo\", \"np.sum\", \"bar\", {\"axis\": 0})])\n", | ||
|
@@ -524,7 +524,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.string_transformer import EmailTransformer\n", | ||
"from sk_transformers import EmailTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [\"[email protected]\"]})\n", | ||
"transformer = EmailTransformer([\"foo\"])\n", | ||
|
@@ -550,7 +550,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.string_transformer import IPAddressEncoderTransformer\n", | ||
"from sk_transformers import IPAddressEncoderTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [\"192.168.1.1\", \"2001:0db8:3c4d:0015:0000:0000:1a2f:1a2b\"]})\n", | ||
"transformer = IPAddressEncoderTransformer([\"foo\"])\n", | ||
|
@@ -574,7 +574,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.string_transformer import PhoneTransformer\n", | ||
"from sk_transformers import PhoneTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [\"+49123456789\", \"0044987654321\", \"3167891234\"]})\n", | ||
"transformer = PhoneTransformer([\"foo\"])\n", | ||
|
@@ -598,7 +598,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.string_transformer import StringSimilarityTransformer\n", | ||
"from sk_transformers import StringSimilarityTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame(\n", | ||
" {\n", | ||
|
@@ -630,7 +630,7 @@ | |
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sk_transformers.string_transformer import StringSlicerTransformer\n", | ||
"from sk_transformers import StringSlicerTransformer\n", | ||
"\n", | ||
"X = pd.DataFrame({\"foo\": [\"abc\", \"def\", \"ghi\"], \"bar\": [\"jkl\", \"mno\", \"pqr\"]})\n", | ||
"transformer = StringSlicerTransformer([(\"foo\", (0, 3, 2)), (\"bar\", (2,))])\n", | ||
|
@@ -662,7 +662,7 @@ | |
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.8" | ||
"version": "3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:25:29) [Clang 14.0.6 ]" | ||
}, | ||
"vscode": { | ||
"interpreter": { | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
from sk_transformers.datetime_transformer import ( | ||
DurationCalculatorTransformer, | ||
TimestampTransformer, | ||
) | ||
from sk_transformers.deep_transformer import ToVecTransformer | ||
from sk_transformers.encoder_transformer import MeanEncoderTransformer | ||
from sk_transformers.generic_transformer import ( | ||
AggregateTransformer, | ||
ColumnDropperTransformer, | ||
DtypeTransformer, | ||
FunctionsTransformer, | ||
LeftJoinTransformer, | ||
MapTransformer, | ||
NaNTransformer, | ||
QueryTransformer, | ||
ValueIndicatorTransformer, | ||
ValueReplacerTransformer, | ||
) | ||
from sk_transformers.number_transformer import MathExpressionTransformer | ||
from sk_transformers.string_transformer import ( | ||
EmailTransformer, | ||
IPAddressEncoderTransformer, | ||
PhoneTransformer, | ||
StringSimilarityTransformer, | ||
StringSlicerTransformer, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.