-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
37f86ed
commit 8996e85
Showing
1 changed file
with
189 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
import numpy as np | ||
from multiprocessing import Pool | ||
|
||
from amplify.client import FixstarsClient | ||
from amplify import Solver, IsingQuadraticModel | ||
from amplify import gen_symbols, decode_solution, IsingPoly | ||
import os | ||
import json | ||
import time | ||
|
||
client = FixstarsClient() | ||
|
||
|
||
def init_client(cfg): | ||
# APIキーの取得 | ||
with open(cfg.base.api_key_path) as f: | ||
client.token = json.load(f)["AMPLIFY_TOKEN"] | ||
client.parameters.timeout = cfg.model.timeout | ||
|
||
|
||
def get_weight(w, k): | ||
# 重みに係数をかける | ||
return sum(w) * k | ||
|
||
|
||
# 正規化 | ||
def minmax(x): | ||
return (x - min(x)) / (max(x) - min(x)) | ||
|
||
|
||
def is_int(x): | ||
""" | ||
学習されないBitが存在してInt変換時にエラーが出ることがあるので作った | ||
:param x: Any | ||
:return: Int | ||
""" | ||
try: | ||
return int(x) | ||
except RuntimeError: | ||
return 0 | ||
|
||
|
||
def forward(data, label, weight, cfg, inf=False): | ||
if not inf: | ||
f1 = sum( | ||
( | ||
sum( | ||
get_weight(weight[j], cfg.model.each_weight) * data[i, j] - label[i] | ||
for j in range(data.shape[1]) # pixels | ||
) / data.shape[1] | ||
) ** 2 | ||
for i in range(data.shape[0]) # index | ||
) | ||
|
||
memo = lambda x: sum(x) ** 2 | ||
f2 = sum(map(memo, weight)) | ||
f = f1 + cfg.model.l * f2 | ||
return f, # ,を打っておけばタプルになり、制約式もつけることが可能になる | ||
|
||
else: | ||
""" | ||
np array | ||
""" | ||
w = np.array( | ||
[ | ||
get_weight(x, cfg.model.each_weight) | ||
for x in weight | ||
] | ||
) | ||
f1 = np.array( | ||
[ | ||
sum( | ||
w * data[i, :].numpy() | ||
) / data.shape[1] | ||
for i in range(data.shape[0]) | ||
] | ||
) | ||
# f1 /= sum(map(sum, weight)) * cfg.model.each_weight | ||
f1 = minmax(f1) | ||
# f1 /= f1.max() | ||
|
||
return f1 | ||
|
||
|
||
def solve_model(expression): | ||
# 制約もつけられる | ||
model = IsingQuadraticModel(*expression) | ||
solver = Solver(client) | ||
result = solver.solve(model) | ||
print("energy: ", result[0].energy) | ||
# print("time(ms): ", solver.client_result.annealing_time_ms) | ||
return result[0].values | ||
|
||
|
||
def model(cfg, data, label): | ||
w = gen_symbols(IsingPoly, cfg.dataset.features, cfg.model.length_weight) | ||
f = forward(data, label, w, cfg) | ||
|
||
q_result = decode_solution(w, solve_model(f)) | ||
q_result = np.vectorize(is_int)(q_result) | ||
return q_result | ||
|
||
|
||
def train_fn(cfg, ds): | ||
data = ds[0] | ||
label = ds[1] | ||
|
||
start = time.time() | ||
w = np.array(model(cfg, data, label), dtype=float) | ||
finish = time.time() | ||
print(f"time: {round(finish - start, 3)} s") | ||
return w | ||
|
||
|
||
def run_model(cfg, ds, weight, multiprocessing=True): | ||
_weight = weight.copy() | ||
if multiprocessing: | ||
num_cores = np.min([os.cpu_count(), len(ds)]) | ||
pool = Pool(num_cores) | ||
output = list(pool.map(train_fn, ds)) | ||
|
||
for i, w in enumerate(output): | ||
_weight += w / cfg.model.n_iter | ||
|
||
pool.close() | ||
pool.join() | ||
else: | ||
for d in ds: | ||
out = train_fn(d) | ||
_weight += out / cfg.model.n_iter | ||
return _weight | ||
|
||
|
||
def val_fn(cfg, ds, weight): | ||
data = ds[0] | ||
label = ds[1] | ||
|
||
result = forward( | ||
data, | ||
label, | ||
weight, | ||
cfg, | ||
inf=True | ||
) | ||
return result, label | ||
|
||
|
||
_weight = None | ||
_cfg = None | ||
|
||
|
||
def val_fn(_ds): | ||
data = _ds[0] | ||
label = _ds[1] | ||
|
||
result = forward( | ||
data, | ||
label, | ||
_weight, | ||
_cfg, | ||
inf=True | ||
) | ||
return result, label | ||
|
||
|
||
def eval_model(cfg, ds, weight): | ||
global _cfg | ||
global _weight | ||
_weight = weight.copy() | ||
_cfg = cfg.copy() | ||
|
||
num_cores = np.min([os.cpu_count(), len(ds)]) | ||
pool = Pool(num_cores) | ||
output = list(pool.map(val_fn, ds)) | ||
_weight = weight.copy() | ||
|
||
preds = [] | ||
labels = [] | ||
|
||
for p, l in output: | ||
preds += p.tolist() | ||
labels += l.numpy().tolist() | ||
|
||
pool.close() | ||
pool.join() | ||
|
||
preds, labels = np.array(preds), np.array(labels) | ||
|
||
return preds, labels |