forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fast cuDNN BatchNorm NHWC kernels support (apache#20615)
* Fast cuDNN NHWC kernels support * Fix lint errors * Get rid of a warning * Remove CuDNNBatchNorm from AMP lists Co-authored-by: Vladimir Cherepanov <[email protected]>
- Loading branch information
Showing
4 changed files
with
275 additions
and
29 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2015 by Contributors | ||
* \file cudnn_batch_norm.cu | ||
* \brief | ||
* \author Junyuan Xie, Da Zheng | ||
*/ | ||
|
||
#include "cudnn_batch_norm.h" | ||
|
||
#include "../../../common/cuda_utils.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
#if MXNET_USE_CUDNN == 1 | ||
|
||
namespace { | ||
|
||
struct Globals { | ||
cudnnTensorDescriptor_t io_desc; | ||
cudnnTensorDescriptor_t mean_desc; | ||
bool internal_aux_states_lock = false; | ||
|
||
static Globals& Get() { | ||
thread_local Globals ret; | ||
return ret; | ||
} | ||
|
||
Globals() { | ||
CUDNN_CALL(cudnnCreateTensorDescriptor(&io_desc)); | ||
CUDNN_CALL(cudnnCreateTensorDescriptor(&mean_desc)); | ||
} | ||
|
||
~Globals() { | ||
CUDNN_CALL(cudnnDestroyTensorDescriptor(io_desc)); | ||
CUDNN_CALL(cudnnDestroyTensorDescriptor(mean_desc)); | ||
} | ||
}; | ||
|
||
void SetDescriptors(const BatchNormParam& param, const TBlob& x) { | ||
CHECK_GE(x.shape_.ndim(), 3); | ||
CHECK(param.axis == 1 || param.axis == x.shape_.ndim() - 1); | ||
|
||
cudnnTensorFormat_t format = param.axis == 1 ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC; | ||
int n = x.shape_[0]; | ||
int c = x.shape_[param.axis]; | ||
size_t last_spatial_i = param.axis == 1 ? x.shape_.ndim() - 1 : x.shape_.ndim() - 2; | ||
int w = x.shape_[last_spatial_i]; | ||
int h = x.shape_.ProdShape(last_spatial_i - (x.shape_.ndim() - 3), last_spatial_i); | ||
|
||
MSHADOW_REAL_TYPE_SWITCH(x.type_flag_, DType, { | ||
CUDNN_CALL(cudnnSetTensor4dDescriptor(Globals::Get().io_desc, format, | ||
mshadow::DataType<DType>::kCudnnFlag, n, c, h, w)); | ||
}) | ||
CUDNN_CALL(cudnnDeriveBNTensorDescriptor(Globals::Get().mean_desc, Globals::Get().io_desc, | ||
CUDNN_BATCHNORM_SPATIAL)); | ||
} | ||
|
||
mshadow::TypeFlag ParamType(int x_type) { | ||
auto xt = static_cast<mshadow::TypeFlag>(x_type); | ||
return xt == mshadow::kFloat16 ? mshadow::kFloat32 : xt; | ||
} | ||
|
||
} // namespace | ||
|
||
bool CudnnBatchNormSupports(const BatchNormParam& param, const TBlob& x) { | ||
int n = x.shape_.ndim(); | ||
return n >= 3 && (param.axis == 1 || param.axis == n - 1); | ||
} | ||
|
||
void CudnnBatchNormForward(const BatchNormParam& param, const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
CHECK_EQ(inputs.size(), 5); | ||
if (ctx.is_train) { | ||
CHECK_EQ(outputs.size(), 3); | ||
CHECK_EQ(req.size(), 3); | ||
} else { | ||
CHECK_GE(outputs.size(), 1); | ||
CHECK_GE(req.size(), 1); | ||
} | ||
CHECK_EQ(req[batchnorm::kOut], kWriteTo); | ||
CHECK_GE(inputs[batchnorm::kData].ndim(), 2); | ||
|
||
SetDescriptors(param, inputs[batchnorm::kData]); | ||
|
||
auto s = ctx.get_stream<gpu>(); | ||
MSHADOW_REAL_TYPE_SWITCH(ParamType(inputs[batchnorm::kData].type_flag_), DType, { | ||
DType a = 1.0f; | ||
DType b = 0.0f; | ||
if (param.fix_gamma) inputs[batchnorm::kGamma].FlatTo1D<gpu, DType>(s) = 1.0f; | ||
if (ctx.is_train) { | ||
size_t workspace_size = 0; | ||
CUDNN_CALL(cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize( | ||
s->dnn_handle_, CUDNN_BATCHNORM_SPATIAL_PERSISTENT, CUDNN_BATCHNORM_OPS_BN, | ||
Globals::Get().io_desc, nullptr, Globals::Get().io_desc, Globals::Get().mean_desc, | ||
nullptr, &workspace_size)); | ||
auto workspace = ctx.requested[0].get_space_internal(workspace_size, "CudnnBatchNormForward"); | ||
|
||
// If the lock on the auxiliary states is set, then this implies that | ||
// the preceding call is also a `Forward()` call, which further | ||
// indicates that we are in the backward mirroring mode, and therefore | ||
// update to the auxiliary states is disabled. This is done by setting | ||
// the `momentum` to `1` (or `factor` to `0`). | ||
double factor = | ||
((dmlc::GetEnv("MXNET_BACKWARD_DO_MIRROR", 0) || dmlc::GetEnv("MXNET_MEMORY_OPT", 0)) && | ||
Globals::Get().internal_aux_states_lock) | ||
? 0 | ||
: (1 - param.momentum); | ||
CUDNN_CALL(cudnnBatchNormalizationForwardTrainingEx( | ||
s->dnn_handle_, CUDNN_BATCHNORM_SPATIAL_PERSISTENT, CUDNN_BATCHNORM_OPS_BN, &a, &b, | ||
Globals::Get().io_desc, inputs[batchnorm::kData].dptr_, | ||
nullptr, nullptr, // zDesc, zData | ||
Globals::Get().io_desc, outputs[batchnorm::kOut].dptr_, | ||
Globals::Get().mean_desc, | ||
inputs[batchnorm::kGamma].dptr_, inputs[batchnorm::kBeta].dptr_, | ||
factor, inputs[batchnorm::kInMovingMean].dptr_, inputs[batchnorm::kInMovingVar].dptr_, | ||
param.eps, outputs[batchnorm::kMean].dptr_, outputs[batchnorm::kVar].dptr_, | ||
nullptr, // activation desc | ||
workspace, workspace_size, | ||
nullptr, 0)); // reserveSpace, reserveSpaceSizeInBytes | ||
} else { | ||
CUDNN_CALL(cudnnBatchNormalizationForwardInference( | ||
s->dnn_handle_, CUDNN_BATCHNORM_SPATIAL, &a, &b, | ||
Globals::Get().io_desc, inputs[batchnorm::kData].dptr_, | ||
Globals::Get().io_desc, outputs[batchnorm::kOut].dptr_, | ||
Globals::Get().mean_desc, | ||
inputs[batchnorm::kGamma].dptr_, inputs[batchnorm::kBeta].dptr_, | ||
inputs[batchnorm::kInMovingMean].dptr_, inputs[batchnorm::kInMovingVar].dptr_, | ||
param.eps)); | ||
} | ||
}) | ||
// Set the lock on the auxiliary states. | ||
// If the next call to the operator is a `Forward()` call, | ||
// then `momentum` will be set to `1` and hence auxiliary states will not be updated. | ||
Globals::Get().internal_aux_states_lock = true; | ||
} | ||
|
||
void CudnnBatchNormBackward(const BatchNormParam& param, const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
CHECK_EQ(inputs.size(), 8); | ||
CHECK_EQ(outputs.size(), 3); | ||
CHECK_EQ(req.size(), 3); | ||
|
||
SetDescriptors(param, inputs[3 + batchnorm::kData]); | ||
auto s = ctx.get_stream<gpu>(); | ||
size_t workspace_size = 0; | ||
CUDNN_CALL(cudnnGetBatchNormalizationBackwardExWorkspaceSize( | ||
s->dnn_handle_, CUDNN_BATCHNORM_SPATIAL_PERSISTENT, CUDNN_BATCHNORM_OPS_BN, | ||
Globals::Get().io_desc, Globals::Get().io_desc, Globals::Get().io_desc, nullptr, | ||
Globals::Get().io_desc, Globals::Get().mean_desc, nullptr, &workspace_size)); | ||
auto workspace = ctx.requested[0].get_space_internal(workspace_size, "CudnnBatchNormBackward"); | ||
MSHADOW_REAL_TYPE_SWITCH(ParamType(inputs[3 + batchnorm::kData].type_flag_), DType, { | ||
if (param.fix_gamma) inputs[3 + batchnorm::kGamma].FlatTo1D<gpu, DType>(s) = 1.0f; | ||
bool grad_add_gamma_beta = req[batchnorm::kGamma] == kAddTo || req[batchnorm::kBeta] == kAddTo; | ||
if (grad_add_gamma_beta) { | ||
if (IsBNWriting(req[batchnorm::kGamma])) | ||
outputs[batchnorm::kGamma].FlatTo1D<gpu, DType>(s) = 0.0f; | ||
if (IsBNWriting(req[batchnorm::kBeta])) | ||
outputs[batchnorm::kBeta].FlatTo1D<gpu, DType>(s) = 0.0f; | ||
} | ||
DType a = 1.0f; | ||
DType b = 0.0f; | ||
DType b_add = 1.0f; | ||
const bool global_stats = !ctx.is_train || param.use_global_stats; | ||
CUDNN_CALL(cudnnBatchNormalizationBackwardEx( | ||
s->dnn_handle_, CUDNN_BATCHNORM_SPATIAL_PERSISTENT, CUDNN_BATCHNORM_OPS_BN, | ||
&a, req[batchnorm::kData] == kAddTo ? &b_add : &b, | ||
&a, grad_add_gamma_beta ? &b_add : &b, | ||
Globals::Get().io_desc, inputs[3 + batchnorm::kData].dptr_, | ||
nullptr, nullptr, // yDesc, yData | ||
Globals::Get().io_desc, inputs[batchnorm::kOut].dptr_, | ||
nullptr, nullptr, // dzDesc, dzData | ||
Globals::Get().io_desc, outputs[batchnorm::kData].dptr_, | ||
Globals::Get().mean_desc, | ||
inputs[3 + batchnorm::kGamma].dptr_, inputs[3 + batchnorm::kBeta].dptr_, | ||
outputs[batchnorm::kGamma].dptr_, outputs[batchnorm::kBeta].dptr_, param.eps, | ||
global_stats ? nullptr : inputs[batchnorm::kMean].dptr_, | ||
global_stats ? nullptr : inputs[batchnorm::kVar].dptr_, | ||
nullptr, // activationDesc | ||
workspace, workspace_size, | ||
nullptr, 0)); // reserveSpace, reserveSpaceSizeInBytes | ||
if (param.fix_gamma) outputs[batchnorm::kGamma].FlatTo1D<gpu, DType>(s) = 0.0f; | ||
}) | ||
Globals::Get().internal_aux_states_lock = false; | ||
} | ||
|
||
#endif // MXNET_USE_CUDNN == 1 | ||
} // namespace op | ||
} // namespace mxnet |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2015 by Contributors | ||
* \file cudnn_batch_norm.h | ||
* \brief | ||
* \author Junyuan Xie | ||
*/ | ||
|
||
#ifndef MXNET_OPERATOR_NN_CUDNN_CUDNN_BATCH_NORM_H_ | ||
#define MXNET_OPERATOR_NN_CUDNN_CUDNN_BATCH_NORM_H_ | ||
|
||
#include <mxnet/base.h> | ||
#include <vector> | ||
#include "../batch_norm-inl.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
#if MXNET_USE_CUDNN == 1 | ||
|
||
STATIC_ASSERT_CUDNN_VERSION_GE(7401); | ||
|
||
bool CudnnBatchNormSupports(const BatchNormParam& param, const TBlob& x); | ||
|
||
void CudnnBatchNormForward(const BatchNormParam& param, const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs); | ||
|
||
void CudnnBatchNormBackward(const BatchNormParam& param, const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs); | ||
|
||
#endif // MXNET_USE_CUDNN == 1 | ||
|
||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_OPERATOR_NN_CUDNN_CUDNN_BATCH_NORM_H_ |