Skip to content

Commit

Permalink
[SPARK-34960][SQL] Aggregate push down for ORC
Browse files Browse the repository at this point in the history
### What changes were proposed in this pull request?

This PR is to add aggregate push down feature for ORC data source v2 reader.

At a high level, the PR does:

* The supported aggregate expression is MIN/MAX/COUNT same as [Parquet aggregate push down](apache#33639).
* BooleanType, ByteType, ShortType, IntegerType, LongType, FloatType, DoubleType, DateType are allowed in MIN/MAXX aggregate push down. All other columns types are not allowed in MIN/MAX aggregate push down.
* All columns types are supported in COUNT aggregate push down.
* Nested column's sub-fields are disallowed in aggregate push down.
* If the file does not have valid statistics, Spark will throw exception and fail query.
* If aggregate has filter or group-by column, aggregate will not be pushed down.

At code level, the PR does:
* `OrcScanBuilder`: `pushAggregation()` checks whether the aggregation can be pushed down. The most checking logic is shared between Parquet and ORC, extracted into `AggregatePushDownUtils.getSchemaForPushedAggregation()`. `OrcScanBuilder` will create a `OrcScan` with aggregation and aggregation data schema.
* `OrcScan`: `createReaderFactory` creates a ORC reader factory with aggregation and schema. Similar change with `ParquetScan`.
* `OrcPartitionReaderFactory`: `buildReaderWithAggregates` creates a ORC reader with aggregate push down (i.e. read ORC file footer to process columns statistics, instead of reading actual data in the file). `buildColumnarReaderWithAggregates` creates a columnar ORC reader similarly. Both delegate the real work to read footer in `OrcUtils.createAggInternalRowFromFooter`.
* `OrcUtils.createAggInternalRowFromFooter`: reads ORC file footer to process columns statistics (real heavy lift happens here). Similar to `ParquetUtils.createAggInternalRowFromFooter`. Leverage utility method such as `OrcFooterReader.readStatistics`.
* `OrcFooterReader`: `readStatistics` reads the ORC `ColumnStatistics[]` into Spark `OrcColumnStatistics`. The transformation is needed here, because ORC `ColumnStatistics[]` stores all columns statistics in a flatten array style, and hard to process. Spark `OrcColumnStatistics` stores the statistics in nested tree structure (e.g. like `StructType`). This is used by `OrcUtils.createAggInternalRowFromFooter`
* `OrcColumnStatistics`: the easy-to-manipulate structure for ORC `ColumnStatistics`. This is used by `OrcFooterReader.readStatistics`.

### Why are the changes needed?

To improve the performance of query with aggregate.

### Does this PR introduce _any_ user-facing change?

Yes. A user-facing config `spark.sql.orc.aggregatePushdown` is added to control enabling/disabling the aggregate push down for ORC. By default the feature is disabled.

### How was this patch tested?

Added unit test in `FileSourceAggregatePushDownSuite.scala`. Refactored all unit tests in apache#33639, and it now works for both Parquet and ORC.

Closes apache#34298 from c21/orc-agg.

Authored-by: Cheng Su <[email protected]>
Signed-off-by: Liang-Chi Hsieh <[email protected]>
  • Loading branch information
c21 authored and chenzhx committed Feb 22, 2022
1 parent 8d55667 commit 4fe0f78
Show file tree
Hide file tree
Showing 16 changed files with 870 additions and 322 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -950,6 +950,14 @@ object SQLConf {
.booleanConf
.createWithDefault(true)

val ORC_AGGREGATE_PUSHDOWN_ENABLED = buildConf("spark.sql.orc.aggregatePushdown")
.doc("If true, aggregates will be pushed down to ORC for optimization. Support MIN, MAX and " +
"COUNT as aggregate expression. For MIN/MAX, support boolean, integer, float and date " +
"type. For COUNT, support all data types.")
.version("3.3.0")
.booleanConf
.createWithDefault(false)

val ORC_SCHEMA_MERGING_ENABLED = buildConf("spark.sql.orc.mergeSchema")
.doc("When true, the Orc data source merges schemas collected from all data files, " +
"otherwise the schema is picked from a random data file.")
Expand Down Expand Up @@ -3691,6 +3699,8 @@ class SQLConf extends Serializable with Logging {

def orcFilterPushDown: Boolean = getConf(ORC_FILTER_PUSHDOWN_ENABLED)

def orcAggregatePushDown: Boolean = getConf(ORC_AGGREGATE_PUSHDOWN_ENABLED)

def isOrcSchemaMergingEnabled: Boolean = getConf(ORC_SCHEMA_MERGING_ENABLED)

def verifyPartitionPath: Boolean = getConf(HIVE_VERIFY_PARTITION_PATH)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ case class StructType(fields: Array[StructField]) extends DataType with Seq[Stru
def names: Array[String] = fieldNames

private lazy val fieldNamesSet: Set[String] = fieldNames.toSet
private[sql] lazy val nameToField: Map[String, StructField] = fields.map(f => f.name -> f).toMap
private lazy val nameToField: Map[String, StructField] = fields.map(f => f.name -> f).toMap
private lazy val nameToIndex: Map[String, Int] = fieldNames.zipWithIndex.toMap

override def equals(that: Any): Boolean = {
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.execution.datasources.orc;

import org.apache.orc.ColumnStatistics;

import java.util.ArrayList;
import java.util.List;

/**
* Columns statistics interface wrapping ORC {@link ColumnStatistics}s.
*
* Because ORC {@link ColumnStatistics}s are stored as an flatten array in ORC file footer,
* this class is used to covert ORC {@link ColumnStatistics}s from array to nested tree structure,
* according to data types. The flatten array stores all data types (including nested types) in
* tree pre-ordering. This is used for aggregate push down in ORC.
*
* For nested data types (array, map and struct), the sub-field statistics are stored recursively
* inside parent column's children field. Here is an example of {@link OrcColumnStatistics}:
*
* Data schema:
* c1: int
* c2: struct<f1: int, f2: float>
* c3: map<key: int, value: string>
* c4: array<int>
*
* OrcColumnStatistics
* | (children)
* ---------------------------------------------
* / | \ \
* c1 c2 c3 c4
* (integer) (struct) (map) (array)
* (min:1, | (children) | (children) | (children)
* max:10) ----- ----- element
* / \ / \ (integer)
* c2.f1 c2.f2 key value
* (integer) (float) (integer) (string)
* (min:0.1, (min:"a",
* max:100.5) max:"zzz")
*/
public class OrcColumnStatistics {
private final ColumnStatistics statistics;
private final List<OrcColumnStatistics> children;

public OrcColumnStatistics(ColumnStatistics statistics) {
this.statistics = statistics;
this.children = new ArrayList<>();
}

public ColumnStatistics getStatistics() {
return statistics;
}

public OrcColumnStatistics get(int ordinal) {
if (ordinal < 0 || ordinal >= children.size()) {
throw new IndexOutOfBoundsException(
String.format("Ordinal %d out of bounds of statistics size %d", ordinal, children.size()));
}
return children.get(ordinal);
}

public void add(OrcColumnStatistics newChild) {
children.add(newChild);
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.execution.datasources.orc;

import org.apache.orc.ColumnStatistics;
import org.apache.orc.Reader;
import org.apache.orc.TypeDescription;
import org.apache.spark.sql.types.*;

import java.util.Arrays;
import java.util.LinkedList;
import java.util.Queue;

/**
* {@link OrcFooterReader} is a util class which encapsulates the helper
* methods of reading ORC file footer.
*/
public class OrcFooterReader {

/**
* Read the columns statistics from ORC file footer.
*
* @param orcReader the reader to read ORC file footer.
* @return Statistics for all columns in the file.
*/
public static OrcColumnStatistics readStatistics(Reader orcReader) {
TypeDescription orcSchema = orcReader.getSchema();
ColumnStatistics[] orcStatistics = orcReader.getStatistics();
StructType sparkSchema = OrcUtils.toCatalystSchema(orcSchema);
return convertStatistics(sparkSchema, new LinkedList<>(Arrays.asList(orcStatistics)));
}

/**
* Convert a queue of ORC {@link ColumnStatistics}s into Spark {@link OrcColumnStatistics}.
* The queue of ORC {@link ColumnStatistics}s are assumed to be ordered as tree pre-order.
*/
private static OrcColumnStatistics convertStatistics(
DataType sparkSchema, Queue<ColumnStatistics> orcStatistics) {
OrcColumnStatistics statistics = new OrcColumnStatistics(orcStatistics.remove());
if (sparkSchema instanceof StructType) {
for (StructField field : ((StructType) sparkSchema).fields()) {
statistics.add(convertStatistics(field.dataType(), orcStatistics));
}
} else if (sparkSchema instanceof MapType) {
statistics.add(convertStatistics(((MapType) sparkSchema).keyType(), orcStatistics));
statistics.add(convertStatistics(((MapType) sparkSchema).valueType(), orcStatistics));
} else if (sparkSchema instanceof ArrayType) {
statistics.add(convertStatistics(((ArrayType) sparkSchema).elementType(), orcStatistics));
}
return statistics;
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.execution.datasources

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.Expression
import org.apache.spark.sql.connector.expressions.NamedReference
import org.apache.spark.sql.connector.expressions.aggregate.{AggregateFunc, Aggregation, Count, CountStar, Max, Min}
import org.apache.spark.sql.execution.RowToColumnConverter
import org.apache.spark.sql.execution.vectorized.{OffHeapColumnVector, OnHeapColumnVector}
import org.apache.spark.sql.types.{BooleanType, ByteType, DateType, DoubleType, FloatType, IntegerType, LongType, ShortType, StructField, StructType}
import org.apache.spark.sql.vectorized.{ColumnarBatch, ColumnVector}

/**
* Utility class for aggregate push down to Parquet and ORC.
*/
object AggregatePushDownUtils {

/**
* Get the data schema for aggregate to be pushed down.
*/
def getSchemaForPushedAggregation(
aggregation: Aggregation,
schema: StructType,
partitionNames: Set[String],
dataFilters: Seq[Expression]): Option[StructType] = {

var finalSchema = new StructType()

def getStructFieldForCol(col: NamedReference): StructField = {
schema.apply(col.fieldNames.head)
}

def isPartitionCol(col: NamedReference) = {
partitionNames.contains(col.fieldNames.head)
}

def processMinOrMax(agg: AggregateFunc): Boolean = {
val (column, aggType) = agg match {
case max: Max => (max.column, "max")
case min: Min => (min.column, "min")
case _ =>
throw new IllegalArgumentException(s"Unexpected type of AggregateFunc ${agg.describe}")
}

if (isPartitionCol(column)) {
// don't push down partition column, footer doesn't have max/min for partition column
return false
}
val structField = getStructFieldForCol(column)

structField.dataType match {
// not push down complex type
// not push down Timestamp because INT96 sort order is undefined,
// Parquet doesn't return statistics for INT96
// not push down Parquet Binary because min/max could be truncated
// (https://issues.apache.org/jira/browse/PARQUET-1685), Parquet Binary
// could be Spark StringType, BinaryType or DecimalType.
// not push down for ORC with same reason.
case BooleanType | ByteType | ShortType | IntegerType
| LongType | FloatType | DoubleType | DateType =>
finalSchema = finalSchema.add(structField.copy(s"$aggType(" + structField.name + ")"))
true
case _ =>
false
}
}

if (aggregation.groupByColumns.nonEmpty || dataFilters.nonEmpty) {
// Parquet/ORC footer has max/min/count for columns
// e.g. SELECT COUNT(col1) FROM t
// but footer doesn't have max/min/count for a column if max/min/count
// are combined with filter or group by
// e.g. SELECT COUNT(col1) FROM t WHERE col2 = 8
// SELECT COUNT(col1) FROM t GROUP BY col2
// However, if the filter is on partition column, max/min/count can still be pushed down
// Todo: add support if groupby column is partition col
// (https://issues.apache.org/jira/browse/SPARK-36646)
return None
}

aggregation.aggregateExpressions.foreach {
case max: Max =>
if (!processMinOrMax(max)) return None
case min: Min =>
if (!processMinOrMax(min)) return None
case count: Count =>
if (count.column.fieldNames.length != 1 || count.isDistinct) return None
finalSchema =
finalSchema.add(StructField(s"count(" + count.column.fieldNames.head + ")", LongType))
case _: CountStar =>
finalSchema = finalSchema.add(StructField("count(*)", LongType))
case _ =>
return None
}

Some(finalSchema)
}

/**
* Check if two Aggregation `a` and `b` is equal or not.
*/
def equivalentAggregations(a: Aggregation, b: Aggregation): Boolean = {
a.aggregateExpressions.sortBy(_.hashCode())
.sameElements(b.aggregateExpressions.sortBy(_.hashCode())) &&
a.groupByColumns.sortBy(_.hashCode()).sameElements(b.groupByColumns.sortBy(_.hashCode()))
}

/**
* Convert the aggregates result from `InternalRow` to `ColumnarBatch`.
* This is used for columnar reader.
*/
def convertAggregatesRowToBatch(
aggregatesAsRow: InternalRow,
aggregatesSchema: StructType,
offHeap: Boolean): ColumnarBatch = {
val converter = new RowToColumnConverter(aggregatesSchema)
val columnVectors = if (offHeap) {
OffHeapColumnVector.allocateColumns(1, aggregatesSchema)
} else {
OnHeapColumnVector.allocateColumns(1, aggregatesSchema)
}
converter.convert(aggregatesAsRow, columnVectors.toArray)
new ColumnarBatch(columnVectors.asInstanceOf[Array[ColumnVector]], 1)
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,22 @@ class OrcDeserializer(
resultRow
}

def deserializeFromValues(orcValues: Seq[WritableComparable[_]]): InternalRow = {
var targetColumnIndex = 0
while (targetColumnIndex < fieldWriters.length) {
if (fieldWriters(targetColumnIndex) != null) {
val value = orcValues(requestedColIds(targetColumnIndex))
if (value == null) {
resultRow.setNullAt(targetColumnIndex)
} else {
fieldWriters(targetColumnIndex)(value)
}
}
targetColumnIndex += 1
}
resultRow
}

/**
* Creates a writer to write ORC values to Catalyst data structure at the given ordinal.
*/
Expand Down
Loading

0 comments on commit 4fe0f78

Please sign in to comment.