Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Layer parameters impl iter #54

Merged
merged 3 commits into from
Mar 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,6 @@ parking_lot = { workspace = true, optional = true }
rayon.workspace = true
once_cell = { version = "1.17.1", optional = true, features = ["std"] }
num-traits = "0.2.15"
smallvec = { version = "1.11.1", optional = true }
matrixmultiply_mt = { version = "0.2.1", optional = true }
matrixmultiply = { version = "0.3.8", optional = true }
wide = "0.7.13"
Expand All @@ -91,7 +90,7 @@ dataset = ["dep:rand"]
iris = []
mnist = ["dataset", "dep:dirs", "dep:flate2", "dep:downloader", "dep:byteorder", "dep:http"]
learn = []
neural-network = ["learn", "dep:autograph_derive", "dep:crossbeam-channel", "dep:parking_lot", "dep:rand", "dep:once_cell", "dep:smallvec"]
neural-network = ["learn", "dep:autograph_derive", "dep:crossbeam-channel", "dep:parking_lot", "dep:rand", "dep:once_cell"]


[package.metadata.krnlc]
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ model.set_training(true)?;
let y = model.forward(x)?;
let loss = y.cross_entropy_loss(t)?;
loss.backward()?;
for parameter in model.parameters_mut()? {
for parameter in model.make_parameter_iter_mut()? {
optimizer.update(learning_rate, parameter)?;
}
```
Expand Down
99 changes: 44 additions & 55 deletions autograph_derive/src/lib.rs
Original file line number Diff line number Diff line change
@@ -1,35 +1,8 @@
/*!
# Usage
You can derive Layer and Forward for structs and enums:
```text
use autograph::{
anyhow::Result,
learn::neural_network::{
autograd::{Variable4, Variable2},
layer::{Layer, Forward, Flatten, Conv2, Relu, MaxPool2, Dense},
},
};

// Layer and Forward can be derived for structs composed of layers.
#[derive(Layer, Forward)]
#[autograph(forward(Variable4, Output=Variable2))]
struct Network {
conv: Conv2<Relu>,
flatten: Flatten,
dense: Dense,
}
#![forbid(unsafe_code)]

// Can also be applied to enums.
#[derive(Layer, Forward)]
#[autograph(forward(Variable4, Output=Variable4))]
enum Dynamic {
Conv(Conv2),
Pool(MaxPool2),
}
```
/*!
Derive macros for [**autograph**](https://docs.rs/autograph).
*/
// TOOD: move docs to autograph::neural_network::layer
// TODO: remove `#[layer]` attribute.

use derive_syn_parse::Parse;
use proc_macro::TokenStream;
Expand Down Expand Up @@ -170,44 +143,64 @@ impl Layers {
}
}
}
fn collect(&self, method: Ident) -> TokenStream2 {
fn iter(&self, method: Ident) -> TokenStream2 {
match self {
Self::Struct(layers) => {
quote! {
::std::iter::empty()
#(.chain(self.#layers.#method()))*
.collect()
}
}
Self::Enum(layers) => {
quote! {
match self {
#(
Self::#layers(layer) => layer.#method(),
)*
}
::std::iter::empty()
#(
.chain((if let Self::#layers(layer) = self {
Some(layer.#method())
} else {
None
}).into_iter().flatten())
)*
}
}
}
}
fn try_collect(&self, method: Ident) -> TokenStream2 {
fn try_iter_mut(&self, method: Ident) -> TokenStream2 {
match self {
Self::Struct(layers) => {
quote! {
Ok(
::std::iter::empty()
#(.chain(self.#layers.#method()?))*
.collect()
)
}
}
Self::Enum(layers) => {
let some_layer = quote! { Some(layer) };
let none = quote! { None };
let match_arms = layers.iter().enumerate().map(|(i, layer)| {
let fields =
(0..layers.len()).map(|u| if i == u { &some_layer } else { &none });
quote! {
Self::#layer(layer) => (#(#fields),*)
}
});
let iters = (0 .. layers.len()).map(|u| {
let index = Index::from(u);
quote! {
layers.#index.map(|layer| layer.#method()).transpose()?.into_iter().flatten()
}
});
quote! {
match self {
let layers = match self {
#(#match_arms),*
};
Ok(
::std::iter::empty()
#(
Self::#layers(layer) => layer.#method(),
.chain(#iters)
)*
}
)
}
}
}
Expand All @@ -227,7 +220,7 @@ impl Layers {
quote! {
match self {
#(
Self::#layers(layer) => Ok(Self::#layers(layer.#method()?)),
Self::#layers(layer) => Ok(Self::#layers(layer.#method(#arg)?)),
)*
}
}
Expand Down Expand Up @@ -282,23 +275,23 @@ fn layer_impl(input: TokenStream2) -> Result<TokenStream2> {
let autograph = autograph_crate(&input.attrs)?;
let ident = &input.ident;
let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();
let parameter_iter = layers.iter(format_ident!("parameter_iter"));
let make_parameter_iter_mut = layers.try_iter_mut(format_ident!("make_parameter_iter_mut"));
let set_training = layers.try_for_each(format_ident!("set_training"), quote! { training });
let parameters = layers.collect(format_ident!("parameters"));
let parameters_mut = layers.try_collect(format_ident!("parameters_mut"));
let cast_mut = layers.try_for_each(format_ident!("cast_mut"), quote!(scalar_type));
let to_device_mut = layers.try_for_each(format_ident!("to_device_mut"), quote!(device.clone()));
let into_device = layers.try_map(format_ident!("into_device"), quote! { device.clone() });
Ok(quote! {
#[automatically_derived]
impl #impl_generics Layer for #ident #ty_generics #where_clause {
fn set_training(&mut self, training: bool) -> #autograph::anyhow::Result<()> {
#set_training
fn parameter_iter(&self) -> impl ::std::iter::Iterator<Item=#autograph::learn::neural_network::autograd::ParameterD> + '_ {
#parameter_iter
}
fn parameters(&self) -> #autograph::learn::neural_network::layer::ParameterVec {
#parameters
fn make_parameter_iter_mut(&mut self) -> #autograph::anyhow::Result<impl ::std::iter::Iterator<Item= #autograph::learn::neural_network::autograd::ParameterViewMutD> + '_> {
#make_parameter_iter_mut
}
fn parameters_mut(&mut self) -> #autograph::anyhow::Result<#autograph::learn::neural_network::layer::ParameterMutVec> {
#parameters_mut
fn set_training(&mut self, training: bool) -> #autograph::anyhow::Result<()> {
#set_training
}
fn cast_mut(&mut self, scalar_type: #autograph::krnl::scalar::ScalarType) -> #autograph::anyhow::Result<()> {
#cast_mut
Expand All @@ -315,8 +308,6 @@ fn layer_impl(input: TokenStream2) -> Result<TokenStream2> {
}

/// Derive for Layer.
///
/// See [`autograph_derive`](crate).
#[proc_macro_derive(Layer, attributes(autograph, layer))]
pub fn layer(input: TokenStream) -> TokenStream {
match layer_impl(input.into()) {
Expand Down Expand Up @@ -370,8 +361,6 @@ fn forward_impl(input: TokenStream2) -> Result<TokenStream2> {
}

/// Derive for Forward.
///
/// See [`autograph_derive`](crate).
#[proc_macro_derive(Forward, attributes(autograph, layer))]
pub fn forward(input: TokenStream) -> TokenStream {
match forward_impl(input.into()) {
Expand Down
2 changes: 1 addition & 1 deletion benches/neural-network-benches/src/autograph_backend.rs
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ impl LeNet5Classifier {
loss.backward()?;
let optimizer = self.optimizer.as_ref().unwrap();
let learning_rate = 0.01;
for parameter in self.model.parameters_mut()? {
for parameter in self.model.make_parameter_iter_mut()? {
optimizer.update(learning_rate, parameter)?;
}
self.model.set_training(false)?;
Expand Down
5 changes: 2 additions & 3 deletions examples/neural-network-mnist/src/main.rs
Original file line number Diff line number Diff line change
Expand Up @@ -162,8 +162,7 @@ fn main() -> Result<()> {
};
println!("model: {model:#?}");
let parameter_count = model
.parameters()
.iter()
.parameter_iter()
.map(|x| x.raw_dim().size())
.sum::<usize>();
println!(
Expand Down Expand Up @@ -303,7 +302,7 @@ fn train<I: Iterator<Item = Result<(Tensor4<u8>, Tensor1<u8>)>>>(
.into_array()?
.into_scalar();
loss.backward()?;
for parameter in model.parameters_mut()? {
for parameter in model.make_parameter_iter_mut()? {
optimizer.update(learning_rate, parameter)?;
}
model.set_training(false)?;
Expand Down
2 changes: 1 addition & 1 deletion src/learn/neural_network.rs
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@ model.set_training(true)?;
let y = model.forward(x)?;
let loss = y.cross_entropy_loss(t)?;
loss.backward()?;
for parameter in model.parameters_mut()? {
for parameter in model.make_parameter_iter_mut()? {
optimizer.update(learning_rate, parameter)?;
}
# Ok(())
Expand Down
Loading
Loading