-
Notifications
You must be signed in to change notification settings - Fork 391
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add msmarco doc corpus v2 document segmentation script (#706)
- Loading branch information
Showing
1 changed file
with
106 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# | ||
# Pyserini: Reproducible IR research with sparse and dense representations | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# Starting point for writing this script | ||
# https://github.com/castorini/docTTTTTquery/blob/master/convert_msmarco_passages_doc_to_anserini.py | ||
import argparse | ||
import os | ||
import sys | ||
import gzip | ||
import json | ||
import spacy #Currently using spacy 2.3.5 | ||
from tqdm import tqdm | ||
import re | ||
import glob | ||
from multiprocessing import Pool | ||
|
||
def create_segments(doc_text, max_length, stride): | ||
doc_text = doc_text.strip() | ||
doc = nlp(doc_text[:10000]) | ||
sentences = [sent.string.strip() for sent in doc.sents] | ||
segments = [] | ||
|
||
for i in range(0, len(sentences), stride): | ||
segment = " ".join(sentences[i:i+max_length]) | ||
segments.append(segment) | ||
if i + max_length >= len(sentences): | ||
break | ||
return segments | ||
|
||
def split_document(f_ins, f_out): | ||
print('Spliting documents...') | ||
output = open(f_out, 'w') | ||
output_id = open(f_out.replace(".json", ".id"), 'w') | ||
for f_in in f_ins: | ||
with gzip.open(f_in, 'rt', encoding='utf8') as in_fh: | ||
for json_string in tqdm(in_fh): | ||
doc = json.loads(json_string) | ||
f_doc_id = doc['docid'] | ||
doc_url = doc['url'] | ||
doc_title = doc['title'] | ||
doc_headings = doc['headings'] | ||
doc_text = doc['body'] | ||
|
||
segments = create_segments(doc_text, args.max_length, args.stride) | ||
|
||
for seg_id, segment in enumerate(segments): | ||
# expanded_text = f'{doc_url}\n{doc_headings}\n{doc_title}\n{segment}' | ||
doc_seg = f'{f_doc_id}#{seg_id}' | ||
output_dict = {'docid': doc_seg, 'url': doc_url, 'title': doc_title, 'headings': doc_headings, 'segment': segment} | ||
output.write(json.dumps(output_dict) + '\n') | ||
output_id.write(doc_seg+'\n') | ||
|
||
output.close() | ||
output_id.close() | ||
print('Done!') | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser( | ||
description='Segment MS MARCO V2 original docs into passages') | ||
parser.add_argument('--input', required=True, help='MS MARCO V2 corpus path.') | ||
parser.add_argument('--output', required=True, help='output file path with json format.') | ||
parser.add_argument('--max_length', default=10, help='maximum sentence length per passage') | ||
parser.add_argument('--stride', default=5, help='the distance between each beginning sentence of passage in a document') | ||
parser.add_argument('--num_workers', default=1, type=int) | ||
args = parser.parse_args() | ||
|
||
|
||
os.makedirs(os.path.dirname(args.output_docs_path), exist_ok=True) | ||
|
||
|
||
max_length = args.max_length | ||
stride = args.stride | ||
nlp = spacy.blank("en") | ||
nlp.add_pipe(nlp.create_pipe("sentencizer")) | ||
|
||
files = glob.glob(os.path.join(args.original_docs_path, '*.gz')) | ||
num_files = len(files) | ||
pool = Pool(args.num_workers) | ||
num_files_per_worker=num_files//args.num_workers | ||
for i in range(args.num_workers): | ||
f_out = os.path.join(args.output_docs_path, 'doc' + str(i) + '.json') | ||
if i==(args.num_workers-1): | ||
file_list = files[i*num_files_per_worker:] | ||
else: | ||
file_list = files[i*num_files_per_worker:((i+1)*num_files_per_worker)] | ||
|
||
pool.apply_async(split_document ,(file_list, f_out)) | ||
|
||
pool.close() | ||
pool.join() | ||
|
||
print('Done!') | ||
|
||
|