forked from pesser/stable-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
201 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
import argparse, os, sys, glob | ||
from omegaconf import OmegaConf | ||
from PIL import Image | ||
from tqdm import tqdm | ||
import numpy as np | ||
import torch | ||
from main import instantiate_from_config | ||
from ldm.models.diffusion.ddim import DDIMSampler | ||
|
||
|
||
def make_batch_ldm(image, mask, device): | ||
image = np.array(Image.open(image).convert("RGB")) | ||
image = image.astype(np.float32)/255.0 | ||
image = image[None].transpose(0,3,1,2) | ||
image = torch.from_numpy(image) | ||
|
||
mask = np.array(Image.open(mask).convert("L")) | ||
mask = mask.astype(np.float32)/255.0 | ||
mask = mask[None,None] | ||
mask[mask < 0.5] = 0 | ||
mask[mask >= 0.5] = 1 | ||
mask = torch.from_numpy(mask) | ||
|
||
masked_image = (1-mask)*image | ||
|
||
batch = {"image": image, "mask": mask, "masked_image": masked_image} | ||
for k in batch: | ||
batch[k] = batch[k].to(device=device) | ||
batch[k] = batch[k]*2.0-1.0 | ||
return batch | ||
|
||
|
||
def make_batch_sd( | ||
image, | ||
mask, | ||
txt, | ||
device): | ||
# image hwc in -1 1 | ||
image = np.array(Image.open(image).convert("RGB")) | ||
image = image[None].transpose(0,3,1,2) | ||
image = torch.from_numpy(image).to(dtype=torch.float32)/127.5-1.0 | ||
|
||
mask = np.array(Image.open(mask).convert("L")) | ||
mask = mask.astype(np.float32)/255.0 | ||
mask = mask[None,None] | ||
mask[mask < 0.5] = 0 | ||
mask[mask >= 0.5] = 1 | ||
mask = torch.from_numpy(mask) | ||
|
||
masked_image = image * (mask < 0.5) | ||
|
||
batch = { | ||
"jpg": image.to(device=device), | ||
"txt": [txt], | ||
"mask": mask.to(device=device), | ||
"masked_image": masked_image.to(device=device), | ||
} | ||
return batch | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--indir", | ||
type=str, | ||
nargs="?", | ||
help="dir containing image-mask pairs (`example.png` and `example_mask.png`)", | ||
) | ||
parser.add_argument( | ||
"--outdir", | ||
type=str, | ||
nargs="?", | ||
help="dir to write results to", | ||
) | ||
parser.add_argument( | ||
"--steps", | ||
type=int, | ||
default=50, | ||
help="number of ddim sampling steps", | ||
) | ||
parser.add_argument( | ||
"--eta", | ||
type=float, | ||
default=0.0, | ||
help="eta of ddim", | ||
) | ||
parser.add_argument( | ||
"--scale", | ||
type=float, | ||
default=6.0, | ||
help="scale of unconditional guidance", | ||
) | ||
parser.add_argument( | ||
"--worldsize", | ||
type=int, | ||
default=1, | ||
help="scale of unconditional guidance", | ||
) | ||
parser.add_argument( | ||
"--rank", | ||
type=int, | ||
default=0, | ||
help="scale of unconditional guidance", | ||
) | ||
parser.add_argument( | ||
"--ckpt", | ||
type=str, | ||
default="/fsx/robin/stable-diffusion/stable-diffusion/logs/2022-08-01T08-52-14_v1-finetune-for-inpainting-laion-aesthetic-larger-masks-and-ucfg/checkpoints/last.ckpt", | ||
help="scale of unconditional guidance", | ||
) | ||
opt = parser.parse_args() | ||
|
||
assert opt.rank < opt.worldsize | ||
|
||
mstr = "mask000.png" | ||
masks = sorted(glob.glob(os.path.join(opt.indir, f"*_{mstr}"))) | ||
images = [x.replace(f"_{mstr}", ".png") for x in masks] | ||
print(f"Found {len(masks)} inputs.") | ||
|
||
#config = "models/ldm/inpainting_big/config.yaml" | ||
config="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-iaesthe.yaml" | ||
config = OmegaConf.load(config) | ||
model = instantiate_from_config(config.model) | ||
#ckpt="models/ldm/inpainting_big/last.ckpt" | ||
ckpt=opt.ckpt | ||
model.load_state_dict(torch.load(ckpt)["state_dict"], | ||
strict=False) | ||
|
||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | ||
model = model.to(device) | ||
sampler = DDIMSampler(model) | ||
|
||
indices = [i for i in range(len(images)) if i % opt.worldsize == opt.rank] | ||
images = [images[i] for i in indices] | ||
masks = [masks[i] for i in indices] | ||
|
||
os.makedirs(opt.outdir, exist_ok=True) | ||
with torch.no_grad(): | ||
with model.ema_scope(): | ||
for image, mask in tqdm(zip(images, masks), total=len(images)): | ||
outpath = os.path.join(opt.outdir, os.path.split(image)[1]) | ||
#batch = make_batch_ldm(image, mask, device=device) | ||
|
||
##### unroll | ||
batch = make_batch_sd(image, mask, txt="photograph of a beautiful empty scene, highest quality settings", | ||
device=device) | ||
|
||
c = model.cond_stage_model.encode(batch["txt"]) | ||
|
||
c_cat = list() | ||
for ck in model.concat_keys: | ||
cc = batch[ck].float() | ||
if ck != model.masked_image_key: | ||
bchw = (1, 4, 64, 64) | ||
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) | ||
else: | ||
cc = model.get_first_stage_encoding(model.encode_first_stage(cc)) | ||
c_cat.append(cc) | ||
c_cat = torch.cat(c_cat, dim=1) | ||
|
||
# cond | ||
cond={"c_concat": [c_cat], "c_crossattn": [c]} | ||
|
||
# uncond cond | ||
uc_cross = model.get_unconditional_conditioning(1, "") | ||
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} | ||
|
||
shape = (model.channels, model.image_size, model.image_size) | ||
samples_cfg, intermediates = sampler.sample( | ||
opt.steps, | ||
1, | ||
shape, | ||
cond, | ||
verbose=False, | ||
eta=opt.eta, | ||
unconditional_guidance_scale=opt.scale, | ||
unconditional_conditioning=uc_full, | ||
) | ||
x_samples_ddim = model.decode_first_stage(samples_cfg) | ||
|
||
image = torch.clamp((batch["jpg"]+1.0)/2.0, | ||
min=0.0, max=1.0) | ||
mask = torch.clamp((batch["mask"]+1.0)/2.0, | ||
min=0.0, max=1.0) | ||
predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0, | ||
min=0.0, max=1.0) | ||
|
||
inpainted = (1-mask)*image+mask*predicted_image | ||
inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255 | ||
Image.fromarray(inpainted.astype(np.uint8)).save(outpath) |