Mindspore implementation version of PICR-Net
Runmin Cong, Hongyu Liu, Chen Zhang*, Wei Zhang, Feng Zheng, Ran Song, and Sam Kwong, Point-aware Interaction and CNN-induced Refinement Network for RGB-D salient object detection, ACM International Conference on Multimedia (ACM MM), 2023.
Pleasure configure the environment according to the given version:
- python 3.8.5
- mindspore 2.1.0
- mindcv 0.2.2
- opencv-python 4.6.0.66
- numpy 1.19.2
- tensorboardx 2.5.1
We also provide ".yaml" files for conda environment configuration, you can download it from [Link], code: mvpl, then use conda env create -f requirement.yaml
to create a required environment.
Please follow the tips to download the processed datasets and pre-trained model:
Download RGB-D SOD dataset from [Link], code: mvpl.
├── RGBD_dataset
├── train
├── RGB
├── depth
├── GT
├── val
├── RGB
├── depth
├── GT
├── test
├── NJU2K
├── RGB
├── depth
├── GT
├── NLPR
├── RGB
├── depth
├── GT
...
Training command :
python train.py
Testing command :
The trained model for PICR-Net can be download here: [Link], code: mvpl.
python test.py
We implement three metrics: MAE (Mean Absolute Error), F-Measure, S-Measure. We use Toolkit [Link] to obtain the test metrics.
- Qualitative results: we provide the saliency maps, you can download them from [Link], code: mvpl.
- Quantitative results:
Coming soon...
If you have any questions, please contact Runmin Cong at [email protected] or Hongyu Liu at [email protected].