-
-
Notifications
You must be signed in to change notification settings - Fork 428
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add frist draft of HSJ attack * Finalize HSJ attack * Fix types * Fix gradient estimation * Make unit tests faster and require less memory * Improve stability of attack * Increase test coverage * Increase stability of HSJ attack and tests * Remove debugging statements * Add comment * Fix typo * Increase stability of HSJ attack and tests * Fix typo * Make HSJA more robust to numerical imprecision * Fix test timeout * Make tests faster
- Loading branch information
Showing
3 changed files
with
501 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,366 @@ | ||
import logging | ||
from typing import Union, Any, Optional, Callable, List | ||
from typing_extensions import Literal | ||
|
||
import math | ||
|
||
import eagerpy as ep | ||
import numpy as np | ||
|
||
from foolbox.attacks import LinearSearchBlendedUniformNoiseAttack | ||
from foolbox.tensorboard import TensorBoard | ||
from ..models import Model | ||
|
||
from ..criteria import Criterion | ||
|
||
from ..distances import l1 | ||
|
||
from ..devutils import atleast_kd, flatten | ||
|
||
from .base import MinimizationAttack, get_is_adversarial | ||
from .base import get_criterion | ||
from .base import T | ||
from .base import raise_if_kwargs | ||
from ..distances import l2, linf | ||
|
||
|
||
class HopSkipJump(MinimizationAttack): | ||
"""A powerful adversarial attack that requires neither gradients | ||
nor probabilities [#Chen19]. | ||
Args: | ||
init_attack : Attack to use to find a starting points. Defaults to | ||
LinearSearchBlendedUniformNoiseAttack. Only used if starting_points is None. | ||
steps : Number of optimization steps within each binary search step. | ||
initial_gradient_eval_steps: Initial number of evaluations for gradient estimation. | ||
Larger initial_num_evals increases time efficiency, but | ||
may decrease query efficiency. | ||
max_gradient_eval_steps : Maximum number of evaluations for gradient estimation. | ||
stepsize_search : How to search for stepsize; choices are 'geometric_progression', | ||
'grid_search'. 'geometric progression' initializes the stepsize | ||
by ||x_t - x||_p / sqrt(iteration), and keep decreasing by half | ||
until reaching the target side of the boundary. 'grid_search' | ||
chooses the optimal epsilon over a grid, in the scale of | ||
||x_t - x||_p. | ||
gamma : The binary search threshold theta is gamma / d^1.5 for | ||
l2 attack and gamma / d^2 for linf attack. | ||
tensorboard : The log directory for TensorBoard summaries. If False, TensorBoard | ||
summaries will be disabled (default). If None, the logdir will be | ||
runs/CURRENT_DATETIME_HOSTNAME. | ||
constraint : Norm to minimize, either "l2" or "linf" | ||
References: | ||
.. [#Chen19] Jianbo Chen, Michael I. Jordan, Martin J. Wainwright, | ||
"HopSkipJumpAttack: A Query-Efficient Decision-Based Attack", | ||
https://arxiv.org/abs/1904.02144 | ||
""" | ||
|
||
distance = l1 | ||
|
||
def __init__( | ||
self, | ||
init_attack: Optional[MinimizationAttack] = None, | ||
steps: int = 64, | ||
initial_gradient_eval_steps: int = 100, | ||
max_gradient_eval_steps: int = 10000, | ||
stepsize_search: Union[ | ||
Literal["geometric_progression"], Literal["grid_search"] | ||
] = "geometric_progression", | ||
gamma: float = 1.0, | ||
tensorboard: Union[Literal[False], None, str] = False, | ||
constraint: Union[Literal["linf"], Literal["l2"]] = "l2", | ||
): | ||
if init_attack is not None and not isinstance(init_attack, MinimizationAttack): | ||
raise NotImplementedError | ||
self.init_attack = init_attack | ||
self.steps = steps | ||
self.initial_num_evals = initial_gradient_eval_steps | ||
self.max_num_evals = max_gradient_eval_steps | ||
self.stepsize_search = stepsize_search | ||
self.gamma = gamma | ||
self.tensorboard = tensorboard | ||
self.constraint = constraint | ||
|
||
assert constraint in ("l2", "linf") | ||
if constraint == "l2": | ||
self.distance = l2 | ||
else: | ||
self.distance = linf | ||
|
||
def run( | ||
self, | ||
model: Model, | ||
inputs: T, | ||
criterion: Union[Criterion, T], | ||
*, | ||
early_stop: Optional[float] = None, | ||
starting_points: Optional[T] = None, | ||
**kwargs: Any, | ||
) -> T: | ||
raise_if_kwargs(kwargs) | ||
originals, restore_type = ep.astensor_(inputs) | ||
del inputs, kwargs | ||
|
||
criterion = get_criterion(criterion) | ||
is_adversarial = get_is_adversarial(criterion, model) | ||
|
||
if starting_points is None: | ||
init_attack: MinimizationAttack | ||
if self.init_attack is None: | ||
init_attack = LinearSearchBlendedUniformNoiseAttack(steps=50) | ||
logging.info( | ||
f"Neither starting_points nor init_attack given. Falling" | ||
f" back to {init_attack!r} for initialization." | ||
) | ||
else: | ||
init_attack = self.init_attack | ||
# TODO: use call and support all types of attacks (once early_stop is | ||
# possible in __call__) | ||
x_advs = init_attack.run(model, originals, criterion, early_stop=early_stop) | ||
else: | ||
x_advs = ep.astensor(starting_points) | ||
|
||
is_adv = is_adversarial(x_advs) | ||
if not is_adv.all(): | ||
failed = is_adv.logical_not().float32().sum() | ||
if starting_points is None: | ||
raise ValueError( | ||
f"init_attack failed for {failed} of {len(is_adv)} inputs" | ||
) | ||
else: | ||
raise ValueError( | ||
f"{failed} of {len(is_adv)} starting_points are not adversarial" | ||
) | ||
del starting_points | ||
|
||
tb = TensorBoard(logdir=self.tensorboard) | ||
|
||
# Project the initialization to the boundary. | ||
x_advs = self._binary_search(is_adversarial, originals, x_advs) | ||
|
||
assert ep.all(is_adversarial(x_advs)) | ||
|
||
distances = self.distance(originals, x_advs) | ||
|
||
for step in range(self.steps): | ||
delta = self.select_delta(originals, distances, step) | ||
|
||
# Choose number of gradient estimation steps. | ||
num_gradient_estimation_steps = int( | ||
min([self.initial_num_evals * math.sqrt(step + 1), self.max_num_evals]) | ||
) | ||
|
||
gradients = self.approximate_gradients( | ||
is_adversarial, x_advs, num_gradient_estimation_steps, delta | ||
) | ||
|
||
if self.constraint == "linf": | ||
update = ep.sign(gradients) | ||
else: | ||
update = gradients | ||
|
||
if self.stepsize_search == "geometric_progression": | ||
# find step size. | ||
epsilons = distances / math.sqrt(step + 1) | ||
|
||
while True: | ||
x_advs_proposals = ep.clip( | ||
x_advs + atleast_kd(epsilons, x_advs.ndim) * update, 0, 1 | ||
) | ||
success = is_adversarial(x_advs_proposals) | ||
epsilons = ep.where(success, epsilons, epsilons / 2.0) | ||
|
||
if ep.all(success): | ||
break | ||
|
||
# Update the sample. | ||
x_advs = ep.clip( | ||
x_advs + atleast_kd(epsilons, update.ndim) * update, 0, 1 | ||
) | ||
|
||
assert ep.all(is_adversarial(x_advs)) | ||
|
||
# Binary search to return to the boundary. | ||
x_advs = self._binary_search(is_adversarial, originals, x_advs) | ||
|
||
assert ep.all(is_adversarial(x_advs)) | ||
|
||
elif self.stepsize_search == "grid_search": | ||
# Grid search for stepsize. | ||
epsilons_grid = ep.expand_dims( | ||
ep.from_numpy( | ||
distances, | ||
np.logspace(-4, 0, num=20, endpoint=True, dtype=np.float32), | ||
), | ||
1, | ||
) * ep.expand_dims(distances, 0) | ||
|
||
proposals_list = [] | ||
|
||
for epsilons in epsilons_grid: | ||
x_advs_proposals = ( | ||
x_advs + atleast_kd(epsilons, update.ndim) * update | ||
) | ||
x_advs_proposals = ep.clip(x_advs_proposals, 0, 1) | ||
|
||
mask = is_adversarial(x_advs_proposals) | ||
|
||
x_advs_proposals = self._binary_search( | ||
is_adversarial, originals, x_advs_proposals | ||
) | ||
|
||
# only use new values where initial guess was already adversarial | ||
x_advs_proposals = ep.where( | ||
atleast_kd(mask, x_advs.ndim), x_advs_proposals, x_advs | ||
) | ||
|
||
proposals_list.append(x_advs_proposals) | ||
|
||
proposals = ep.stack(proposals_list, 0) | ||
proposals_distances = self.distance( | ||
ep.expand_dims(originals, 0), proposals | ||
) | ||
minimal_idx = ep.argmin(proposals_distances, 0) | ||
|
||
x_advs = proposals[minimal_idx] | ||
|
||
distances = self.distance(originals, x_advs) | ||
|
||
# log stats | ||
tb.histogram("norms", distances, step) | ||
|
||
return restore_type(x_advs) | ||
|
||
def approximate_gradients( | ||
self, | ||
is_adversarial: Callable[[ep.Tensor], ep.Tensor], | ||
x_advs: ep.Tensor, | ||
steps: int, | ||
delta: ep.Tensor, | ||
) -> ep.Tensor: | ||
# (steps, bs, ...) | ||
noise_shape = tuple([steps] + list(x_advs.shape)) | ||
if self.constraint == "l2": | ||
rv = ep.normal(x_advs, noise_shape) | ||
elif self.constraint == "linf": | ||
rv = ep.uniform(x_advs, low=-1, high=1, shape=noise_shape) | ||
rv /= atleast_kd(ep.norms.l2(flatten(rv, keep=1), -1), rv.ndim) + 1e-12 | ||
|
||
scaled_rv = atleast_kd(ep.expand_dims(delta, 0), rv.ndim) * rv | ||
|
||
perturbed = ep.expand_dims(x_advs, 0) + scaled_rv | ||
perturbed = ep.clip(perturbed, 0, 1) | ||
|
||
rv = (perturbed - x_advs) / 2 | ||
|
||
multipliers_list: List[ep.Tensor] = [] | ||
for step in range(steps): | ||
decision = is_adversarial(perturbed[step]) | ||
multipliers_list.append( | ||
ep.where( | ||
decision, | ||
ep.ones(x_advs, (len(x_advs,))), | ||
-ep.ones(x_advs, (len(decision,))), | ||
) | ||
) | ||
# (steps, bs, ...) | ||
multipliers = ep.stack(multipliers_list, 0) | ||
|
||
vals = ep.where( | ||
ep.abs(ep.mean(multipliers, axis=0, keepdims=True)) == 1, | ||
multipliers, | ||
multipliers - ep.mean(multipliers, axis=0, keepdims=True), | ||
) | ||
grad = ep.mean(atleast_kd(vals, rv.ndim) * rv, axis=0) | ||
|
||
grad /= ep.norms.l2(atleast_kd(flatten(grad), grad.ndim)) + 1e-12 | ||
|
||
return grad | ||
|
||
def _project( | ||
self, originals: ep.Tensor, perturbed: ep.Tensor, epsilons: ep.Tensor | ||
) -> ep.Tensor: | ||
"""Clips the perturbations to epsilon and returns the new perturbed | ||
Args: | ||
originals: A batch of reference inputs. | ||
perturbed: A batch of perturbed inputs. | ||
epsilons: A batch of norm values to project to. | ||
Returns: | ||
A tensor like perturbed but with the perturbation clipped to epsilon. | ||
""" | ||
epsilons = atleast_kd(epsilons, originals.ndim) | ||
if self.constraint == "linf": | ||
perturbation = perturbed - originals | ||
|
||
# ep.clip does not support tensors as min/max | ||
clipped_perturbed = ep.where( | ||
perturbation > epsilons, originals + epsilons, perturbed | ||
) | ||
clipped_perturbed = ep.where( | ||
perturbation < -epsilons, originals - epsilons, clipped_perturbed | ||
) | ||
return clipped_perturbed | ||
else: | ||
return (1.0 - epsilons) * originals + epsilons * perturbed | ||
|
||
def _binary_search( | ||
self, | ||
is_adversarial: Callable[[ep.Tensor], ep.Tensor], | ||
originals: ep.Tensor, | ||
perturbed: ep.Tensor, | ||
) -> ep.Tensor: | ||
# Choose upper thresholds in binary search based on constraint. | ||
d = np.prod(perturbed.shape[1:]) | ||
if self.constraint == "linf": | ||
highs = linf(originals, perturbed) | ||
|
||
# TODO: Check if the threshold is correct | ||
# empirically this seems to be too low | ||
thresholds = highs * self.gamma / (d * d) | ||
else: | ||
highs = ep.ones(perturbed, len(perturbed)) | ||
thresholds = self.gamma / (d * math.sqrt(d)) | ||
|
||
lows = ep.zeros_like(highs) | ||
|
||
# use this variable to check when mids stays constant and the BS has converged | ||
old_mids = highs | ||
|
||
while ep.any(highs - lows > thresholds): | ||
mids = (lows + highs) / 2 | ||
mids_perturbed = self._project(originals, perturbed, mids) | ||
is_adversarial_ = is_adversarial(mids_perturbed) | ||
|
||
highs = ep.where(is_adversarial_, mids, highs) | ||
lows = ep.where(is_adversarial_, lows, mids) | ||
|
||
# check of there is no more progress due to numerical imprecision | ||
reached_numerical_precision = (old_mids == mids).all() | ||
old_mids = mids | ||
|
||
if reached_numerical_precision: | ||
# TODO: warn user | ||
break | ||
|
||
res = self._project(originals, perturbed, highs) | ||
|
||
return res | ||
|
||
def select_delta( | ||
self, originals: ep.Tensor, distances: ep.Tensor, step: int | ||
) -> ep.Tensor: | ||
result: ep.Tensor | ||
if step == 0: | ||
result = 0.1 * ep.ones_like(distances) | ||
else: | ||
d = np.prod(originals.shape[1:]) | ||
|
||
if self.constraint == "linf": | ||
theta = self.gamma / (d * d) | ||
result = d * theta * distances | ||
else: | ||
theta = self.gamma / (d * np.sqrt(d)) | ||
result = np.sqrt(d) * theta * distances | ||
|
||
return result |
Oops, something went wrong.