Skip to content

[CVPR 2025] UniGoal: Towards Universal Zero-shot Goal-oriented Navigation

License

Notifications You must be signed in to change notification settings

bagh2178/UniGoal

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UniGoal: Navigate to Any Goal in Zero-shot!

UniGoal: Towards Universal Zero-shot Goal-oriented Navigation
Hang Yin*, Xiuwei Xu* $^\dagger$, Linqing Zhao, Ziwei Wang, Jie Zhou, Jiwen Lu$^\ddagger$

* Equal contribution $\dagger$ Project leader $\ddagger$ Corresponding author

We propose a unified graph representation for zero-shot goal-oriented navigation. Our method can be directly applied to different kinds of scenes and goals without training.

News

  • [2025/04/06]: Release code. Now instance-image-goal is supported. Text-goal and object-goal will be supported soon.
  • [2025/03/08]: Initial update. We are working for ICCV now. Arxiv and code will be released within two weeks.
  • [2025/02/27]: UniGoal is accepted to CVPR 2025!

Demo

Real-world Deployment:

demo

Simulation Environment:

demo

Demos are a little bit large; please wait a moment to load them. Welcome to the home page for more complete demos and detailed introductions.

Method

Method Pipeline: overview

Installation

Step 1 (Code)

Clone UniGoal.

git clone https://github.com/bagh2178/UniGoal.git
cd UniGoal

Step 2 (Environment)

Create environment.

conda create -n unigoal python==3.8
conda activate unigoal

Install habitat-sim==0.2.3 and habitat-lab==0.2.3.

conda install habitat-sim==0.2.3 -c conda-forge -c aihabitat
pip install -e third_party/habitat-lab

Install third party packages.

pip install git+https://github.com/cvg/LightGlue.git
pip install git+https://github.com/facebookresearch/detectron2.git
git clone https://github.com/IDEA-Research/Grounded-Segment-Anything.git third_party/Grounded-Segment-Anything
pip install -e third_party/Grounded-Segment-Anything/segment_anything
pip install --no-build-isolation -e third_party/Grounded-Segment-Anything/GroundingDINO
wget -O data/models/sam_vit_h_4b8939.pth https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
wget -O data/models/groundingdino_swint_ogc.pth https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth

Install other packages.

conda install pytorch::faiss-gpu
pip install -r requirements.txt

Step 3 (Dataset)

Download HM3D scene dataset from here and instance-image-goal navigation episodes dataset from here.

The structure of the dataset is outlined as follows:

UniGoal/
└── data/
    ├── datasets/
    │   └── instance_imagenav/
    │       └── hm3d/
    │           └── v3/
    │               └── val/
    │                   ├── content/
    │                   │   ├── 4ok3usBNeis.json.gz
    │                   │   ├── 5cdEh9F2hJL.json.gz
    │                   │   ├── ...
    │                   │   └── zt1RVoi7PcG.json.gz
    │                   └── val.json.gz
    └── scene_datasets/
        └── hm3d_v0.2/
            └── val/
                ├── 00800-TEEsavR23oF/
                │   ├── TEEsavR23oF.basis.glb
                │   └── TEEsavR23oF.basis.navmesh
                ├── 00801-HaxA7YrQdEC/
                ├── ...
                └── 00899-58NLZxWBSpk/

Evaluation

Run UniGoal:

CUDA_VISIBLE_DEVICES=0 python main.py --iin  # instance-image-goal

Citation

@article{yin2025unigoal, 
      title={UniGoal: Towards Universal Zero-shot Goal-oriented Navigation}, 
      author={Hang Yin and Xiuwei Xu and Linqing Zhao and Ziwei Wang and Jie Zhou and Jiwen Lu},
      journal={arXiv preprint arXiv:2503.10630},
      year={2025}
}