Paper | Project Page | Video | 中文解读
UniGoal: Towards Universal Zero-shot Goal-oriented Navigation
Hang Yin*, Xiuwei Xu*$^\dagger$ , Linqing Zhao, Ziwei Wang, Jie Zhou, Jiwen Lu$^\ddagger$
* Equal contribution
We propose a unified graph representation for zero-shot goal-oriented navigation. Our method can be directly applied to different kinds of scenes and goals without training.
- [2025/04/06]: Release code. Now instance-image-goal is supported. Text-goal and object-goal will be supported soon.
- [2025/03/08]: Initial update. We are working for ICCV now. Arxiv and code will be released within two weeks.
- [2025/02/27]: UniGoal is accepted to CVPR 2025!
Demos are a little bit large; please wait a moment to load them. Welcome to the home page for more complete demos and detailed introductions.
Step 1 (Code)
Clone UniGoal.
git clone https://github.com/bagh2178/UniGoal.git
cd UniGoal
Step 2 (Environment)
Create environment.
conda create -n unigoal python==3.8
conda activate unigoal
Install habitat-sim==0.2.3 and habitat-lab==0.2.3.
conda install habitat-sim==0.2.3 -c conda-forge -c aihabitat
pip install -e third_party/habitat-lab
Install third party packages.
pip install git+https://github.com/cvg/LightGlue.git
pip install git+https://github.com/facebookresearch/detectron2.git
git clone https://github.com/IDEA-Research/Grounded-Segment-Anything.git third_party/Grounded-Segment-Anything
pip install -e third_party/Grounded-Segment-Anything/segment_anything
pip install --no-build-isolation -e third_party/Grounded-Segment-Anything/GroundingDINO
wget -O data/models/sam_vit_h_4b8939.pth https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
wget -O data/models/groundingdino_swint_ogc.pth https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
Install other packages.
conda install pytorch::faiss-gpu
pip install -r requirements.txt
Step 3 (Dataset)
Download HM3D scene dataset from here and instance-image-goal navigation episodes dataset from here.
The structure of the dataset is outlined as follows:
UniGoal/
└── data/
├── datasets/
│ └── instance_imagenav/
│ └── hm3d/
│ └── v3/
│ └── val/
│ ├── content/
│ │ ├── 4ok3usBNeis.json.gz
│ │ ├── 5cdEh9F2hJL.json.gz
│ │ ├── ...
│ │ └── zt1RVoi7PcG.json.gz
│ └── val.json.gz
└── scene_datasets/
└── hm3d_v0.2/
└── val/
├── 00800-TEEsavR23oF/
│ ├── TEEsavR23oF.basis.glb
│ └── TEEsavR23oF.basis.navmesh
├── 00801-HaxA7YrQdEC/
├── ...
└── 00899-58NLZxWBSpk/
Run UniGoal:
CUDA_VISIBLE_DEVICES=0 python main.py --iin # instance-image-goal
@article{yin2025unigoal,
title={UniGoal: Towards Universal Zero-shot Goal-oriented Navigation},
author={Hang Yin and Xiuwei Xu and Linqing Zhao and Ziwei Wang and Jie Zhou and Jiwen Lu},
journal={arXiv preprint arXiv:2503.10630},
year={2025}
}