-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add keras_model_fn integ test (#338)
- Loading branch information
Showing
2 changed files
with
247 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
# Copyright 2017-2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"). You | ||
# may not use this file except in compliance with the License. A copy of | ||
# the License is located at | ||
# | ||
# http://aws.amazon.com/apache2.0/ | ||
# | ||
# or in the "license" file accompanying this file. This file is | ||
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF | ||
# ANY KIND, either express or implied. See the License for the specific | ||
# language governing permissions and limitations under the License. | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import os | ||
|
||
import tensorflow as tf | ||
from tensorflow.python.keras.layers import InputLayer, Conv2D, Activation, MaxPooling2D, Dropout, Flatten, Dense | ||
from tensorflow.python.keras.models import Sequential | ||
from tensorflow.python.keras.optimizers import RMSprop | ||
from tensorflow.python.saved_model.signature_constants import PREDICT_INPUTS | ||
|
||
HEIGHT = 32 | ||
WIDTH = 32 | ||
DEPTH = 3 | ||
NUM_CLASSES = 10 | ||
NUM_DATA_BATCHES = 5 | ||
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 10000 * NUM_DATA_BATCHES | ||
BATCH_SIZE = 128 | ||
|
||
|
||
def keras_model_fn(hyperparameters): | ||
"""keras_model_fn receives hyperparameters from the training job and returns a compiled keras model. | ||
The model will be transformed into a TensorFlow Estimator before training and it will be saved in a | ||
TensorFlow Serving SavedModel at the end of training. | ||
Args: | ||
hyperparameters: The hyperparameters passed to the SageMaker TrainingJob that runs your TensorFlow | ||
training script. | ||
Returns: A compiled Keras model | ||
""" | ||
model = Sequential() | ||
|
||
# TensorFlow Serving default prediction input tensor name is PREDICT_INPUTS. | ||
# We must conform to this naming scheme. | ||
model.add(InputLayer(input_shape=(HEIGHT, WIDTH, DEPTH), name=PREDICT_INPUTS)) | ||
model.add(Conv2D(32, (3, 3), padding='same')) | ||
model.add(Activation('relu')) | ||
model.add(Conv2D(32, (3, 3))) | ||
model.add(Activation('relu')) | ||
model.add(MaxPooling2D(pool_size=(2, 2))) | ||
model.add(Dropout(0.25)) | ||
|
||
model.add(Conv2D(64, (3, 3), padding='same')) | ||
model.add(Activation('relu')) | ||
model.add(Conv2D(64, (3, 3))) | ||
model.add(Activation('relu')) | ||
model.add(MaxPooling2D(pool_size=(2, 2))) | ||
model.add(Dropout(0.25)) | ||
|
||
model.add(Flatten()) | ||
model.add(Dense(512)) | ||
model.add(Activation('relu')) | ||
model.add(Dropout(0.5)) | ||
model.add(Dense(NUM_CLASSES)) | ||
model.add(Activation('softmax')) | ||
|
||
_model = tf.keras.Model(inputs=model.input, outputs=model.output) | ||
|
||
opt = RMSprop(lr=hyperparameters['learning_rate'], decay=hyperparameters['decay']) | ||
|
||
_model.compile(loss='categorical_crossentropy', | ||
optimizer=opt, | ||
metrics=['accuracy']) | ||
|
||
return _model | ||
|
||
|
||
def serving_input_fn(params): | ||
# Notice that the input placeholder has the same input shape as the Keras model input | ||
tensor = tf.placeholder(tf.float32, shape=[None, HEIGHT, WIDTH, DEPTH]) | ||
|
||
# The inputs key PREDICT_INPUTS matches the Keras InputLayer name | ||
inputs = {PREDICT_INPUTS: tensor} | ||
return tf.estimator.export.ServingInputReceiver(inputs, inputs) | ||
|
||
|
||
def train_input_fn(training_dir, params): | ||
return _input(tf.estimator.ModeKeys.TRAIN, | ||
batch_size=BATCH_SIZE, data_dir=training_dir) | ||
|
||
|
||
def eval_input_fn(training_dir, params): | ||
return _input(tf.estimator.ModeKeys.EVAL, | ||
batch_size=BATCH_SIZE, data_dir=training_dir) | ||
|
||
|
||
def _input(mode, batch_size, data_dir): | ||
"""Uses the tf.data input pipeline for CIFAR-10 dataset. | ||
Args: | ||
mode: Standard names for model modes (tf.estimators.ModeKeys). | ||
batch_size: The number of samples per batch of input requested. | ||
""" | ||
dataset = _record_dataset(_filenames(mode, data_dir)) | ||
|
||
# For training repeat forever. | ||
if mode == tf.estimator.ModeKeys.TRAIN: | ||
dataset = dataset.repeat() | ||
|
||
dataset = dataset.map(_dataset_parser) | ||
dataset.prefetch(2 * batch_size) | ||
|
||
# For training, preprocess the image and shuffle. | ||
if mode == tf.estimator.ModeKeys.TRAIN: | ||
dataset = dataset.map(_train_preprocess_fn) | ||
dataset.prefetch(2 * batch_size) | ||
|
||
# Ensure that the capacity is sufficiently large to provide good random | ||
# shuffling. | ||
buffer_size = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * 0.4) + 3 * batch_size | ||
dataset = dataset.shuffle(buffer_size=buffer_size) | ||
|
||
# Subtract off the mean and divide by the variance of the pixels. | ||
dataset = dataset.map( | ||
lambda image, label: (tf.image.per_image_standardization(image), label)) | ||
dataset.prefetch(2 * batch_size) | ||
|
||
# Batch results by up to batch_size, and then fetch the tuple from the | ||
# iterator. | ||
iterator = dataset.batch(batch_size).make_one_shot_iterator() | ||
images, labels = iterator.get_next() | ||
|
||
return {PREDICT_INPUTS: images}, labels | ||
|
||
|
||
def _train_preprocess_fn(image, label): | ||
"""Preprocess a single training image of layout [height, width, depth].""" | ||
# Resize the image to add four extra pixels on each side. | ||
image = tf.image.resize_image_with_crop_or_pad(image, HEIGHT + 8, WIDTH + 8) | ||
|
||
# Randomly crop a [HEIGHT, WIDTH] section of the image. | ||
image = tf.random_crop(image, [HEIGHT, WIDTH, DEPTH]) | ||
|
||
# Randomly flip the image horizontally. | ||
image = tf.image.random_flip_left_right(image) | ||
|
||
return image, label | ||
|
||
|
||
def _dataset_parser(value): | ||
"""Parse a CIFAR-10 record from value.""" | ||
# Every record consists of a label followed by the image, with a fixed number | ||
# of bytes for each. | ||
label_bytes = 1 | ||
image_bytes = HEIGHT * WIDTH * DEPTH | ||
record_bytes = label_bytes + image_bytes | ||
|
||
# Convert from a string to a vector of uint8 that is record_bytes long. | ||
raw_record = tf.decode_raw(value, tf.uint8) | ||
|
||
# The first byte represents the label, which we convert from uint8 to int32. | ||
label = tf.cast(raw_record[0], tf.int32) | ||
|
||
# The remaining bytes after the label represent the image, which we reshape | ||
# from [depth * height * width] to [depth, height, width]. | ||
depth_major = tf.reshape(raw_record[label_bytes:record_bytes], | ||
[DEPTH, HEIGHT, WIDTH]) | ||
|
||
# Convert from [depth, height, width] to [height, width, depth], and cast as | ||
# float32. | ||
image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32) | ||
|
||
return image, tf.one_hot(label, NUM_CLASSES) | ||
|
||
|
||
def _record_dataset(filenames): | ||
"""Returns an input pipeline Dataset from `filenames`.""" | ||
record_bytes = HEIGHT * WIDTH * DEPTH + 1 | ||
return tf.data.FixedLengthRecordDataset(filenames, record_bytes) | ||
|
||
|
||
def _filenames(mode, data_dir): | ||
"""Returns a list of filenames based on 'mode'.""" | ||
data_dir = os.path.join(data_dir, 'cifar-10-batches-bin') | ||
|
||
assert os.path.exists(data_dir), ('Run cifar10_download_and_extract.py first ' | ||
'to download and extract the CIFAR-10 data.') | ||
|
||
if mode == tf.estimator.ModeKeys.TRAIN: | ||
return [ | ||
os.path.join(data_dir, 'data_batch_%d.bin' % i) | ||
for i in range(1, NUM_DATA_BATCHES + 1) | ||
] | ||
elif mode == tf.estimator.ModeKeys.EVAL: | ||
return [os.path.join(data_dir, 'test_batch.bin')] | ||
else: | ||
raise ValueError('Invalid mode: %s' % mode) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
# Copyright 2017-2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"). You | ||
# may not use this file except in compliance with the License. A copy of | ||
# the License is located at | ||
# | ||
# http://aws.amazon.com/apache2.0/ | ||
# | ||
# or in the "license" file accompanying this file. This file is | ||
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF | ||
# ANY KIND, either express or implied. See the License for the specific | ||
# language governing permissions and limitations under the License. | ||
from __future__ import absolute_import | ||
|
||
import os | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
from sagemaker.tensorflow import TensorFlow | ||
from tests.integ import DATA_DIR | ||
from tests.integ.timeout import timeout_and_delete_endpoint_by_name, timeout | ||
|
||
|
||
@pytest.mark.continuous_testing | ||
def test_keras(sagemaker_session, tf_full_version): | ||
script_path = os.path.join(DATA_DIR, 'cifar_10', 'source') | ||
dataset_path = os.path.join(DATA_DIR, 'cifar_10', 'data') | ||
|
||
with timeout(minutes=45): | ||
estimator = TensorFlow(entry_point='keras_cnn_cifar_10.py', | ||
source_dir=script_path, | ||
role='SageMakerRole', sagemaker_session=sagemaker_session, | ||
hyperparameters={'learning_rate': 1e-4, 'decay': 1e-6}, | ||
training_steps=500, evaluation_steps=5, | ||
train_instance_count=1, train_instance_type='ml.c4.xlarge', | ||
train_max_run=45 * 60) | ||
|
||
inputs = estimator.sagemaker_session.upload_data(path=dataset_path, key_prefix='data/cifar10') | ||
|
||
estimator.fit(inputs) | ||
|
||
endpoint_name = estimator.latest_training_job.name | ||
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session): | ||
predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.p2.xlarge') | ||
|
||
data = np.random.randn(32, 32, 3) | ||
predict_response = predictor.predict(data) | ||
assert len(predict_response['outputs']['probabilities']['floatVal']) == 10 |