Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rename TF input helper functions. #323

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -71,19 +71,23 @@ def serving_input_fn(params):


def train_input_fn(training_dir, params):
return _input_fn(training_dir, 'abalone_train.csv')
"""Returns training input data as a Tuple: (dict of `features`, `targets`)"""
return _get_numpy_data(training_dir, 'abalone_train.csv')


def eval_input_fn(training_dir, params):
return _input_fn(training_dir, 'abalone_test.csv')
"""Returns evaluation input data as a Tuple: (dict of `features`, `targets`)"""
return _get_numpy_data(training_dir, 'abalone_test.csv')


def _input_fn(training_dir, training_filename):
def _get_numpy_data(training_dir, training_filename):
training_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=os.path.join(training_dir, training_filename), target_dtype=np.int, features_dtype=np.float32)

return tf.estimator.inputs.numpy_input_fn(
numpy_input_fn = tf.estimator.inputs.numpy_input_fn(
x={INPUT_TENSOR_NAME: np.array(training_set.data)},
y=np.array(training_set.target),
num_epochs=None,
shuffle=True)()
shuffle=True)

return numpy_input_fn()
Original file line number Diff line number Diff line change
Expand Up @@ -58,19 +58,23 @@ def serving_input_fn(params):


def train_input_fn(training_dir, params):
return _input_fn(training_dir, 'abalone_train.csv')
"""Returns training input data as a Tuple: (dict of `features`, `targets`)"""
return _get_numpy_data(training_dir, 'abalone_train.csv')


def eval_input_fn(training_dir, params):
return _input_fn(training_dir, 'abalone_test.csv')
"""Returns evaluation input data as a Tuple: (dict of `features`, `targets`)"""
return _get_numpy_data(training_dir, 'abalone_test.csv')


def _input_fn(training_dir, training_filename):
def _get_numpy_data(training_dir, training_filename):
training_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=os.path.join(training_dir, training_filename), target_dtype=np.int, features_dtype=np.float32)

return tf.estimator.inputs.numpy_input_fn(
numpy_input_fn = tf.estimator.inputs.numpy_input_fn(
x={INPUT_TENSOR_NAME: np.array(training_set.data)},
y=np.array(training_set.target),
num_epochs=None,
shuffle=True)()
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think you need to remove the "()" at the end of shuffle=True)(). Otherwise, I get a TypeError: 'tuple' object is not callable error.


return numpy_input_fn()
6 changes: 3 additions & 3 deletions sagemaker-python-sdk/tensorflow_distributed_mnist/mnist.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,14 +102,14 @@ def read_and_decode(filename_queue):


def train_input_fn(training_dir, params):
return _input_fn(training_dir, 'train.tfrecords', batch_size=100)
return _read_tfrecord_data(training_dir, 'train.tfrecords', batch_size=100)


def eval_input_fn(training_dir, params):
return _input_fn(training_dir, 'test.tfrecords', batch_size=100)
return _read_tfrecord_data(training_dir, 'test.tfrecords', batch_size=100)


def _input_fn(training_dir, training_filename, batch_size=100):
def _read_tfrecord_data(training_dir, training_filename, batch_size=100):
test_file = os.path.join(training_dir, training_filename)
filename_queue = tf.train.string_input_producer([test_file])

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,23 +19,25 @@ def serving_input_fn(params):


def train_input_fn(training_dir, params):
"""Returns input function that would feed the model during training"""
return _generate_input_fn(training_dir, 'iris_training.csv')
"""Returns training input data as a Tuple: (dict of `features`, `targets`)"""
return _get_numpy_data(training_dir, 'iris_training.csv')


def eval_input_fn(training_dir, params):
"""Returns input function that would feed the model during evaluation"""
return _generate_input_fn(training_dir, 'iris_test.csv')
"""Returns evaluation input data as a Tuple: (dict of `features`, `targets`)"""
return _get_numpy_data(training_dir, 'iris_test.csv')


def _generate_input_fn(training_dir, training_filename):
def _get_numpy_data(training_dir, training_filename):
training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
filename=os.path.join(training_dir, training_filename),
target_dtype=np.int,
features_dtype=np.float32)

return tf.estimator.inputs.numpy_input_fn(
numpy_input_fn = tf.estimator.inputs.numpy_input_fn(
x={INPUT_TENSOR_NAME: np.array(training_set.data)},
y=np.array(training_set.target),
num_epochs=None,
shuffle=True)()
shuffle=True)

return numpy_input_fn()