Skip to content

Commit

Permalink
Add working scripts for ZCC (#36)
Browse files Browse the repository at this point in the history
  • Loading branch information
rahul003 authored Nov 23, 2019
1 parent 958074a commit 556fd8f
Show file tree
Hide file tree
Showing 2 changed files with 53 additions and 36 deletions.
36 changes: 22 additions & 14 deletions examples/tensorflow/scripts/mnist.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import smdebug.tensorflow as smd

parser = argparse.ArgumentParser()
parser.add_argument("--script-mode", type=bool, default=False)
parser.add_argument("--smdebug_path", type=str)
parser.add_argument("--train_frequency", type=int, help="How often to save TS data", default=50)
parser.add_argument("--eval_frequency", type=int, help="How often to save TS data", default=10)
Expand Down Expand Up @@ -86,7 +87,8 @@ def cnn_model_fn(features, labels, mode):
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=args.lr)
optimizer = smd.get_hook().wrap_optimizer(optimizer)
if args.script_mode:
optimizer = smd.get_hook().wrap_optimizer(optimizer)
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

Expand Down Expand Up @@ -116,19 +118,25 @@ def cnn_model_fn(features, labels, mode):
x={"x": eval_data}, y=eval_labels, num_epochs=1, shuffle=False
)

hook = smd.SessionHook(
out_dir=args.smdebug_path,
save_config=smd.SaveConfig(
{
smd.modes.TRAIN: smd.SaveConfigMode(args.train_frequency),
smd.modes.EVAL: smd.SaveConfigMode(args.eval_frequency),
}
),
)
if args.script_mode:
hook = smd.SessionHook(
out_dir=args.smdebug_path,
save_config=smd.SaveConfig(
{
smd.modes.TRAIN: smd.SaveConfigMode(args.train_frequency),
smd.modes.EVAL: smd.SaveConfigMode(args.eval_frequency),
}
),
)
hooks = [hook]
else:
hooks = []

hook.set_mode(smd.modes.TRAIN)
if args.script_mode:
hook.set_mode(smd.modes.TRAIN)
# train one step and display the probabilties
mnist_classifier.train(input_fn=train_input_fn, steps=args.num_steps, hooks=[hook])
mnist_classifier.train(input_fn=train_input_fn, steps=args.num_steps, hooks=hooks)

hook.set_mode(smd.modes.EVAL)
mnist_classifier.evaluate(input_fn=eval_input_fn, steps=args.num_eval_steps, hooks=[hook])
if args.script_mode:
hook.set_mode(smd.modes.EVAL)
mnist_classifier.evaluate(input_fn=eval_input_fn, steps=args.num_eval_steps, hooks=hooks)
53 changes: 31 additions & 22 deletions examples/tensorflow/scripts/simple.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ def str2bool(v):


parser = argparse.ArgumentParser()
parser.add_argument("--script-mode", type=str2bool, default=False)
parser.add_argument("--model_dir", type=str, help="S3 path for the model")
parser.add_argument("--lr", type=float, help="Learning Rate", default=0.001)
parser.add_argument("--steps", type=int, help="Number of steps to run", default=100)
Expand Down Expand Up @@ -52,22 +53,26 @@ def str2bool(v):
random.seed(12)


# save tensors as reductions if necessary
rdnc = (
smd.ReductionConfig(reductions=["mean"], abs_reductions=["max"], norms=["l1"])
if args.reductions
else None
)

# create the hook
# Note that we are saving all tensors here by passing save_all=True
hook = smd.SessionHook(
out_dir=args.smdebug_path,
save_all=args.save_all,
include_collections=["weights", "gradients", "losses"],
save_config=smd.SaveConfig(save_interval=args.save_frequency),
reduction_config=rdnc,
)
if args.script_mode:
# save tensors as reductions if necessary
rdnc = (
smd.ReductionConfig(reductions=["mean"], abs_reductions=["max"], norms=["l1"])
if args.reductions
else None
)

# create the hook
# Note that we are saving all tensors here by passing save_all=True
hook = smd.SessionHook(
out_dir=args.smdebug_path,
save_all=args.save_all,
include_collections=["weights", "gradients", "losses"],
save_config=smd.SaveConfig(save_interval=args.save_frequency),
reduction_config=rdnc,
)
hooks = [hook]
else:
hooks = []

# Network definition
# Note the use of name scopes
Expand All @@ -78,31 +83,35 @@ def str2bool(v):
w0 = [[1], [1.0]]
y = tf.matmul(x, w0)
loss = tf.reduce_mean((tf.matmul(x, w) - y) ** 2, name="loss")
hook.add_to_collection("losses", loss)

smd.get_hook("session", create_if_not_exists=True).add_to_collection("losses", loss)

global_step = tf.Variable(17, name="global_step", trainable=False)
increment_global_step_op = tf.assign(global_step, global_step + 1)

optimizer = tf.train.AdamOptimizer(args.lr)

# Wrap the optimizer with wrap_optimizer so Tornasole can find gradients and optimizer_variables to save
optimizer = hook.wrap_optimizer(optimizer)
if args.script_mode:
# Wrap the optimizer with wrap_optimizer so Tornasole can find gradients and optimizer_variables to save
optimizer = hook.wrap_optimizer(optimizer)

# use this wrapped optimizer to minimize loss
optimizer_op = optimizer.minimize(loss, global_step=increment_global_step_op)

hook.set_mode(smd.modes.TRAIN)
if args.script_mode:
hook.set_mode(smd.modes.TRAIN)

# pass the hook to hooks parameter of monitored session
sess = tf.train.MonitoredSession(hooks=[hook])
sess = tf.train.MonitoredSession(hooks=hooks)

# use this session for running the tensorflow model
for i in range(args.steps):
x_ = np.random.random((10, 2)) * args.scale
_loss, opt, gstep = sess.run([loss, optimizer_op, increment_global_step_op], {x: x_})
print(f"Step={i}, Loss={_loss}")

hook.set_mode(smd.modes.EVAL)
if args.script_mode:
hook.set_mode(smd.modes.EVAL)
for i in range(args.steps):
x_ = np.random.random((10, 2)) * args.scale
sess.run([loss, increment_global_step_op], {x: x_})

0 comments on commit 556fd8f

Please sign in to comment.