Skip to content

arbishakram/masked_regression_code

Repository files navigation

Masked Regression (IJCV, 2020)

MR - Python Implementation

This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize facial expressions. The demo video for MR can be found here.

Nazar Khan1 · Arbish Akram1 · Arif Mahmood2 · Sania Ashraf1· Kashif Murtaza1

1 Punjab University College of Information Technology (PUCIT), Lahore, Pakistan
2 Department of Computer Science, Information Technology University (ITU), Lahore, Pakistan
International Journal of Computer Vision (IJCV), 2020

Usage

1. Download any Facial Expression Synthesis dataset
2. Create a folder structure as described here.
  • Split images into training and test sets (e.g., 90%/10% for training and test, respectively).
  • Crop all images to 128 x 128, where the faces are centered.
3. Training

To train MR:

$ python main.py --mode train --train_dataset_dir 'dataset/train/'  --image_size 128 --total_images 200 --input_ch 1 
                        --receptive_field 3 --lamda 0.4 
4. Test

To test MR:

$ python main.py --mode test --test_dataset_dir 'dataset/test/' --image_size 128 --total_images 20 --input_ch 1 
                        --receptive_field 3 
5. Test in the wild

To test MR:

$ python main.py --mode test_inthewild --test_dataset_dir 'dataset/inthewild/' --image_size 128 --total_images 20 --input_ch 1 
                        --receptive_field 3 

Results

Facial expression synthesis on sketches and animals Figure 1

Facial expression synthesis on in the wild images

Citation

If this work is useful for your research, please cite our Paper:

@article{khan_mr_ijcv_2019,
author="Khan, Nazar and Akram, Arbish and Mahmood, Arif and Ashraf, Sania and Murtaza, Kashif", 
journal="International Journal of Computer Vision",
pages = "1433--1454",
title = "{Masked Linear Regression for Learning Local Receptive Fields for Facial Expression Synthesis}",
volume = "128",
year = "2020"
}

Releases

No releases published

Packages

No packages published

Languages