Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TIR][USMP] Add a parallel to serial for loop converter pass #8469

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions include/tvm/tir/transform.h
Original file line number Diff line number Diff line change
Expand Up @@ -442,6 +442,15 @@ TVM_DLL Pass FlattenBuffer();
*/
TVM_DLL Pass MergeDynamicSharedMemoryAllocations();

/*!
* \brief This pass is post-scheduling pass to convert all
* Parallel For loops to Serial ones. This is run
* to attain lesser memory and/or executor/backend
* does not support parallel launch of For loops.
* \return The pass.
*/
TVM_DLL Pass ConvertForLoopsToSerial();

} // namespace transform
} // namespace tir
} // namespace tvm
Expand Down
11 changes: 11 additions & 0 deletions python/tvm/tir/transform/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -678,3 +678,14 @@ def MergeDynamicSharedMemoryAllocations():
The result pass
"""
return _ffi_api.MergeDynamicSharedMemoryAllocations() # type: ignore


def ConvertForLoopsToSerial():
"""Convert Parallel For Loops to Serial For Loops.

Returns
-------
fpass : tvm.transform.Pass
The result pass
"""
return _ffi_api.ConvertForLoopsToSerial() # type: ignore
75 changes: 75 additions & 0 deletions src/tir/transforms/convert_for_loops_serial.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file tir/transforms/convert_for_loops_serial.cc
* \brief Convert all for loops to serial for lesser memory consumption
*/
#include <tvm/arith/analyzer.h>
#include <tvm/runtime/device_api.h>
#include <tvm/tir/function.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

namespace tvm {
namespace tir {

class ForLoopSerialConverter : public StmtExprMutator {
public:
ForLoopSerialConverter() = default;
Stmt operator()(const PrimFunc& func);

private:
Stmt VisitStmt_(const ForNode* op) override;
};

Stmt ForLoopSerialConverter::VisitStmt_(const ForNode* op) {
if (op->kind == ForKind::kParallel) {
return For(op->loop_var, op->min, op->extent, ForKind::kSerial, op->body, op->thread_binding,
op->annotations, op->span);
}
return StmtExprMutator::VisitStmt_(op);
}

Stmt ForLoopSerialConverter::operator()(const PrimFunc& func) {
return this->VisitStmt(func->body);
}

PrimFunc ConvertForLoopsToSerial(PrimFunc func) {
PrimFuncNode* fptr = func.CopyOnWrite();
fptr->body = ForLoopSerialConverter()(func);
return func;
}

namespace transform {

Pass ConvertForLoopsToSerial() {
auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
return ConvertForLoopsToSerial(std::move(f));
};
return CreatePrimFuncPass(pass_func, 0, "tir.ConvertForLoopsToSerial", {});
}

TVM_REGISTER_GLOBAL("tir.transform.ConvertForLoopsToSerial")
.set_body_typed(ConvertForLoopsToSerial);

} // namespace transform

} // namespace tir
} // namespace tvm
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest

import tvm
from tvm import tir, script
from tvm.script import ty
from tvm.tir import stmt_functor

# fmt: off
@tvm.script.tir
def fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2(placeholder_30: ty.handle, placeholder_31: ty.handle, placeholder_32: ty.handle, T_cast_8: ty.handle) -> None:
# function attr dict
tir.func_attr({"global_symbol": "fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2", "tir.noalias": True})
placeholder_33 = tir.match_buffer(placeholder_30, [1, 28, 28, 192], dtype="int16", elem_offset=0, align=128, offset_factor=1)
placeholder_34 = tir.match_buffer(placeholder_31, [1, 1, 192, 16], dtype="int16", elem_offset=0, align=128, offset_factor=1)
placeholder_35 = tir.match_buffer(placeholder_32, [1, 1, 1, 16], dtype="int32", elem_offset=0, align=128, offset_factor=1)
T_cast_9 = tir.match_buffer(T_cast_8, [1, 28, 28, 16], dtype="int16", elem_offset=0, align=128, offset_factor=1)
# body
PaddedInput_3 = tir.allocate([1, 28, 28, 192], "int16", "global")
for i0_i1_fused_3 in tir.parallel(0, 28):
for i2_3, i3_3 in tir.grid(28, 192):
tir.store(PaddedInput_3, (((i0_i1_fused_3*5376) + (i2_3*192)) + i3_3), tir.load("int16", placeholder_33.data, (((i0_i1_fused_3*5376) + (i2_3*192)) + i3_3)), True)
for ax0_ax1_fused_ax2_fused_3 in tir.parallel(0, 784):
for ax3_2 in tir.serial(0, 16):
Conv2dOutput_3 = tir.allocate([1, 1, 1, 1], "int32", "global")
tir.store(Conv2dOutput_3, 0, 0, True)
for rc_3 in tir.serial(0, 192):
tir.store(Conv2dOutput_3, 0, (tir.load("int32", Conv2dOutput_3, 0) + (tir.cast(tir.load("int16", PaddedInput_3, ((ax0_ax1_fused_ax2_fused_3*192) + rc_3)), "int32")*tir.cast(tir.load("int16", placeholder_34.data, ((rc_3*16) + ax3_2)), "int32"))), True)
tir.store(T_cast_9.data, ((ax0_ax1_fused_ax2_fused_3*16) + ax3_2), tir.cast(tir.cast(tir.max(tir.min(tir.q_multiply_shift((tir.load("int32", Conv2dOutput_3, 0) + tir.load("int32", placeholder_35.data, ax3_2)), 1764006585, 31, -7, dtype="int32"), 255), 0), "uint8"), "int16"), True)
# fmt: on


def test_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2():
primfunc = fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2
mod = tvm.IRModule.from_expr(primfunc)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

want to assert that you find at least one kParallel for loop in here?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do we need to ? I mean its written in the test.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

let's consider this blocked on testing infrastructure. a common pattern in tests is for the data to be re-used in multiple tests and then lose the "why" behind the test. that's where my request is coming from.

mod = tvm.tir.transform.ConvertForLoopsToSerial()(mod)

def verify_serial_loops(stmt):
if isinstance(stmt, tvm.tir.For):
assert stmt.kind == tvm.tir.ForKind.SERIAL

for _, primfunc in mod.functions.items():
stmt_functor.post_order_visit(primfunc.body, verify_serial_loops)


if __name__ == "__main__":
pytest.main([__file__])