Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Frontend][Onnx] If Operator Support #6730

Merged
merged 6 commits into from
Nov 6, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 43 additions & 1 deletion python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -2146,7 +2146,9 @@ def body_fn(*loop_inputs):

# Get the output of the current loop using the updated inputs.
with subgraph_scope:
loop_outputs = subgraph_scope.from_onnx(body, 11, get_output_expr=True)
loop_outputs = subgraph_scope.from_onnx(
body, graph_scope.opset, get_output_expr=True
)
# Unpack the body outputs and prepare variables for next iteration.
new_cond = loop_outputs[0]
new_loop_vars = [loop_outputs[i] for i in range(1, 1 + num_deps)]
Expand Down Expand Up @@ -2197,6 +2199,43 @@ def body_fn(*loop_inputs):
return outputs


class If(OnnxOpConverter):
"""Operator converter for If"""

@classmethod
def _impl_v1(cls, inputs, attr, params):
cond = inputs[0]
then_branch = attr.get("then_branch", None)
else_branch = attr.get("else_branch", None)
assert then_branch is not None and else_branch is not None

# Create graph converters for both branches.
graph_scope = GraphProto.current
then_graph = GraphProto(graph_scope._shape, graph_scope._dtype)
then_graph._nodes = graph_scope._nodes.copy()
else_graph = GraphProto(graph_scope._shape, graph_scope._dtype)
else_graph._nodes = graph_scope._nodes.copy()

# Convert each branch to a relay expression.
with then_graph:
then_expr = then_graph.from_onnx(then_branch, graph_scope.opset, get_output_expr=True)
with else_graph:
else_expr = else_graph.from_onnx(else_branch, graph_scope.opset, get_output_expr=True)

# Add constants from both branches to parent graph.
graph_scope._params.update(then_graph._params)
then_free_vars = analysis.free_vars(then_expr)
for var in then_free_vars:
graph_scope._nodes.update({var.name_hint: var})
graph_scope._params.update(else_graph._params)
else_free_vars = analysis.free_vars(else_expr)
for var in else_free_vars:
graph_scope._nodes.update({var.name_hint: var})

# Now we can construct the relay if statement and return.
return _expr.If(cond, then_expr, else_expr)


# compatible operators that do NOT require any conversion.
_identity_list = []

Expand Down Expand Up @@ -2354,6 +2393,7 @@ def _get_convert_map(opset):
"Range": Range.get_converter(opset),
# defs/control_flow
"Loop": Loop.get_converter(opset),
"If": If.get_converter(opset),
}


Expand Down Expand Up @@ -2381,6 +2421,7 @@ def __init__(self, shape, dtype):
self._num_param = 0
self._shape = shape if shape else {}
self._dtype = dtype
self.opset = None

def __enter__(self):
self._old_manager = GraphProto.current
Expand Down Expand Up @@ -2436,6 +2477,7 @@ def from_onnx(self, graph, opset, freeze_params=False, get_output_expr=False):
params : dict
A dict of name: tvm.nd.array pairs, used as pretrained weights
"""
self.opset = opset
# parse network inputs to relay, aka parameters
for init_tensor in graph.initializer:
if not init_tensor.name.strip():
Expand Down
49 changes: 48 additions & 1 deletion tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
import numpy as np
import math
import onnx
from onnx import helper, TensorProto, mapping
from onnx import helper, TensorProto, mapping, numpy_helper
import torch
import torchvision
import tvm.topi.testing
Expand Down Expand Up @@ -3841,6 +3841,53 @@ def test_loop():
verify_count_loop()


@tvm.testing.uses_gpu
def test_if():
# Given a bool scalar input cond.
# return constant tensor x if cond is True, otherwise return constant tensor y.
then_out = onnx.helper.make_tensor_value_info("then_out", onnx.TensorProto.FLOAT, [5])
else_out = onnx.helper.make_tensor_value_info("else_out", onnx.TensorProto.FLOAT, [5])

x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
y = np.array([5, 4, 3, 2, 1]).astype(np.float32)

then_const_node = onnx.helper.make_node(
"Constant", inputs=[], outputs=["then_out"], value=onnx.numpy_helper.from_array(x)
)

else_const_node = onnx.helper.make_node(
"Constant", inputs=[], outputs=["else_out"], value=onnx.numpy_helper.from_array(y)
)

then_body = onnx.helper.make_graph([then_const_node], "then_body", [], [then_out])

else_body = onnx.helper.make_graph([else_const_node], "else_body", [], [else_out])

if_node = onnx.helper.make_node(
"If", inputs=["cond"], outputs=["res"], then_branch=then_body, else_branch=else_body
)

if_graph = onnx.helper.make_graph(
[if_node],
"if_outer",
inputs=[
onnx.helper.make_tensor_value_info("cond", onnx.TensorProto.BOOL, []),
],
outputs=[
onnx.helper.make_tensor_value_info("res", onnx.TensorProto.FLOAT, [5]),
],
)

if_model = onnx.helper.make_model(if_graph)
cond = np.array(1).astype("bool")
correct_out = x if cond else y

for target, ctx in tvm.testing.enabled_targets():
tvm_out = get_tvm_output_with_vm(if_model, [cond], target, ctx, freeze_params=True)
for i in range(len(tvm_out)):
tvm.testing.assert_allclose(correct_out[i], tvm_out[i], rtol=1e-05, atol=1e-05)


if __name__ == "__main__":
test_flatten()
test_reshape()
Expand Down