Skip to content

Commit

Permalink
add query context data tests
Browse files Browse the repository at this point in the history
  • Loading branch information
eschutho committed Feb 6, 2025
1 parent 9e5876d commit 69858cf
Showing 1 changed file with 238 additions and 0 deletions.
238 changes: 238 additions & 0 deletions tests/unit_tests/common/test_query_context_processor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

from unittest.mock import MagicMock, patch

import numpy as np
import pandas as pd
import pytest

from superset.common.chart_data import ChartDataResultFormat
from superset.common.query_context_processor import QueryContextProcessor
from superset.utils.core import GenericDataType


@pytest.fixture
def mock_query_context():
with patch(
"superset.common.query_context_processor.QueryContextProcessor"
) as mock_query_context_processor:
yield mock_query_context_processor


@pytest.fixture
def processor(mock_query_context):
mock_query_context.datasource.data = MagicMock()
mock_query_context.datasource.data.get.return_value = {
"col1": "Column 1",
"col2": "Column 2",
}
return QueryContextProcessor(mock_query_context)


def test_get_data_table_like(processor, mock_query_context):
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.JSON

result = processor.get_data(df, coltypes)
expected = [
{"col1": 1, "col2": "a"},
{"col1": 2, "col2": "b"},
{"col1": 3, "col2": "c"},
]
assert result == expected


@patch("superset.common.query_context_processor.csv.df_to_escaped_csv")
def test_get_data_csv(mock_df_to_escaped_csv, processor, mock_query_context):
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.CSV

mock_df_to_escaped_csv.return_value = "col1,col2\n1,a\n2,b\n3,c\n"
result = processor.get_data(df, coltypes)
assert result == "col1,col2\n1,a\n2,b\n3,c\n"
mock_df_to_escaped_csv.assert_called_once_with(df, index=False, encoding="utf-8")


@patch("superset.common.query_context_processor.excel.df_to_excel")
@patch("superset.common.query_context_processor.excel.apply_column_types")
def test_get_data_xlsx(
mock_apply_column_types, mock_df_to_excel, processor, mock_query_context
):
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.XLSX

mock_df_to_excel.return_value = b"binary data"
result = processor.get_data(df, coltypes)
assert result == b"binary data"
mock_apply_column_types.assert_called_once_with(df, coltypes)
mock_df_to_excel.assert_called_once_with(df)


def test_get_data_json(processor, mock_query_context):
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.JSON

result = processor.get_data(df, coltypes)
expected = [
{"col1": 1, "col2": "a"},
{"col1": 2, "col2": "b"},
{"col1": 3, "col2": "c"},
]
assert result == expected


def test_get_data_invalid_dataframe(processor, mock_query_context):
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.JSON

with patch.object(df, "to_dict", side_effect=ValueError("Invalid DataFrame")):
with pytest.raises(ValueError, match="Invalid DataFrame"):
processor.get_data(df, coltypes)


def test_get_data_non_unique_columns(processor, mock_query_context):
data = [[1, "a"], [2, "b"], [3, "c"]]
df = pd.DataFrame(data, columns=["col1", "col1"])
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.JSON

with pytest.warns(
UserWarning,
match="DataFrame columns are not unique, some columns will be omitted",
):
processor.get_data(df, coltypes)


def test_get_data_empty_dataframe_json(processor, mock_query_context):
df = pd.DataFrame(columns=["col1", "col2"])
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.JSON
result = processor.get_data(df, coltypes)
assert result == []


@patch("superset.common.query_context_processor.csv.df_to_escaped_csv")
def test_get_data_empty_dataframe_csv(
mock_df_to_escaped_csv, processor, mock_query_context
):
df = pd.DataFrame(columns=["col1", "col2"])
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.CSV
mock_df_to_escaped_csv.return_value = "col1,col2\n"
result = processor.get_data(df, coltypes)
assert result == "col1,col2\n"
mock_df_to_escaped_csv.assert_called_once_with(df, index=False, encoding="utf-8")


@patch("superset.common.query_context_processor.excel.df_to_excel")
@patch("superset.common.query_context_processor.excel.apply_column_types")
def test_get_data_empty_dataframe_xlsx(
mock_apply_column_types, mock_df_to_excel, processor, mock_query_context
):
df = pd.DataFrame(columns=["col1", "col2"])
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.XLSX
mock_df_to_excel.return_value = b"binary data empty"
result = processor.get_data(df, coltypes)
assert result == b"binary data empty"
mock_apply_column_types.assert_called_once_with(df, coltypes)
mock_df_to_excel.assert_called_once_with(df)


def test_get_data_nan_values_json(processor, mock_query_context):
df = pd.DataFrame({"col1": [1, np.nan, 3], "col2": ["a", "b", "c"]})
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.JSON
result = processor.get_data(df, coltypes)
assert result[0]["col1"] == 1
assert pd.isna(result[1]["col1"])
assert result[2]["col1"] == 3


def test_get_data_invalid_input(processor, mock_query_context):
df = "not a dataframe"
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.JSON
with pytest.raises(AttributeError):
processor.get_data(df, coltypes)


def test_get_data_default_format_when_result_format_is_none(
processor, mock_query_context
):
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = None
result = processor.get_data(df, coltypes)
expected = [
{"col1": 1, "col2": "a"},
{"col1": 2, "col2": "b"},
{"col1": 3, "col2": "c"},
]
assert result == expected


def fake_apply_column_types(df, coltypes):
if len(coltypes) != len(df.columns):
raise ValueError("Mismatch between column types and dataframe columns")
return df


@patch("superset.common.query_context_processor.excel.df_to_excel")
@patch(
"superset.common.query_context_processor.excel.apply_column_types",
side_effect=fake_apply_column_types,
)
def test_get_data_invalid_coltypes_length_xlsx(
mock_apply_column_types, mock_df_to_excel, processor, mock_query_context
):
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})
coltypes = [GenericDataType.NUMERIC] # Mismatched length
mock_query_context.result_format = ChartDataResultFormat.XLSX
with pytest.raises(
ValueError, match="Mismatch between column types and dataframe columns"
):
processor.get_data(df, coltypes)


def test_get_data_does_not_mutate_dataframe(processor, mock_query_context):
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})
original_df = df.copy(deep=True)
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.JSON
_ = processor.get_data(df, coltypes)
pd.testing.assert_frame_equal(df, original_df)


@patch(
"superset.common.query_context_processor.excel.apply_column_types",
side_effect=ValueError("Conversion error"),
)
def test_get_data_xlsx_apply_column_types_error(
mock_apply_column_types, processor, mock_query_context
):
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING]
mock_query_context.result_format = ChartDataResultFormat.XLSX
with pytest.raises(ValueError, match="Conversion error"):
processor.get_data(df, coltypes)

0 comments on commit 69858cf

Please sign in to comment.