-
Notifications
You must be signed in to change notification settings - Fork 14.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
238 additions
and
0 deletions.
There are no files selected for viewing
238 changes: 238 additions & 0 deletions
238
tests/unit_tests/common/test_query_context_processor.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
from unittest.mock import MagicMock, patch | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import pytest | ||
|
||
from superset.common.chart_data import ChartDataResultFormat | ||
from superset.common.query_context_processor import QueryContextProcessor | ||
from superset.utils.core import GenericDataType | ||
|
||
|
||
@pytest.fixture | ||
def mock_query_context(): | ||
with patch( | ||
"superset.common.query_context_processor.QueryContextProcessor" | ||
) as mock_query_context_processor: | ||
yield mock_query_context_processor | ||
|
||
|
||
@pytest.fixture | ||
def processor(mock_query_context): | ||
mock_query_context.datasource.data = MagicMock() | ||
mock_query_context.datasource.data.get.return_value = { | ||
"col1": "Column 1", | ||
"col2": "Column 2", | ||
} | ||
return QueryContextProcessor(mock_query_context) | ||
|
||
|
||
def test_get_data_table_like(processor, mock_query_context): | ||
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]}) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.JSON | ||
|
||
result = processor.get_data(df, coltypes) | ||
expected = [ | ||
{"col1": 1, "col2": "a"}, | ||
{"col1": 2, "col2": "b"}, | ||
{"col1": 3, "col2": "c"}, | ||
] | ||
assert result == expected | ||
|
||
|
||
@patch("superset.common.query_context_processor.csv.df_to_escaped_csv") | ||
def test_get_data_csv(mock_df_to_escaped_csv, processor, mock_query_context): | ||
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]}) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.CSV | ||
|
||
mock_df_to_escaped_csv.return_value = "col1,col2\n1,a\n2,b\n3,c\n" | ||
result = processor.get_data(df, coltypes) | ||
assert result == "col1,col2\n1,a\n2,b\n3,c\n" | ||
mock_df_to_escaped_csv.assert_called_once_with(df, index=False, encoding="utf-8") | ||
|
||
|
||
@patch("superset.common.query_context_processor.excel.df_to_excel") | ||
@patch("superset.common.query_context_processor.excel.apply_column_types") | ||
def test_get_data_xlsx( | ||
mock_apply_column_types, mock_df_to_excel, processor, mock_query_context | ||
): | ||
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]}) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.XLSX | ||
|
||
mock_df_to_excel.return_value = b"binary data" | ||
result = processor.get_data(df, coltypes) | ||
assert result == b"binary data" | ||
mock_apply_column_types.assert_called_once_with(df, coltypes) | ||
mock_df_to_excel.assert_called_once_with(df) | ||
|
||
|
||
def test_get_data_json(processor, mock_query_context): | ||
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]}) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.JSON | ||
|
||
result = processor.get_data(df, coltypes) | ||
expected = [ | ||
{"col1": 1, "col2": "a"}, | ||
{"col1": 2, "col2": "b"}, | ||
{"col1": 3, "col2": "c"}, | ||
] | ||
assert result == expected | ||
|
||
|
||
def test_get_data_invalid_dataframe(processor, mock_query_context): | ||
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]}) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.JSON | ||
|
||
with patch.object(df, "to_dict", side_effect=ValueError("Invalid DataFrame")): | ||
with pytest.raises(ValueError, match="Invalid DataFrame"): | ||
processor.get_data(df, coltypes) | ||
|
||
|
||
def test_get_data_non_unique_columns(processor, mock_query_context): | ||
data = [[1, "a"], [2, "b"], [3, "c"]] | ||
df = pd.DataFrame(data, columns=["col1", "col1"]) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.JSON | ||
|
||
with pytest.warns( | ||
UserWarning, | ||
match="DataFrame columns are not unique, some columns will be omitted", | ||
): | ||
processor.get_data(df, coltypes) | ||
|
||
|
||
def test_get_data_empty_dataframe_json(processor, mock_query_context): | ||
df = pd.DataFrame(columns=["col1", "col2"]) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.JSON | ||
result = processor.get_data(df, coltypes) | ||
assert result == [] | ||
|
||
|
||
@patch("superset.common.query_context_processor.csv.df_to_escaped_csv") | ||
def test_get_data_empty_dataframe_csv( | ||
mock_df_to_escaped_csv, processor, mock_query_context | ||
): | ||
df = pd.DataFrame(columns=["col1", "col2"]) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.CSV | ||
mock_df_to_escaped_csv.return_value = "col1,col2\n" | ||
result = processor.get_data(df, coltypes) | ||
assert result == "col1,col2\n" | ||
mock_df_to_escaped_csv.assert_called_once_with(df, index=False, encoding="utf-8") | ||
|
||
|
||
@patch("superset.common.query_context_processor.excel.df_to_excel") | ||
@patch("superset.common.query_context_processor.excel.apply_column_types") | ||
def test_get_data_empty_dataframe_xlsx( | ||
mock_apply_column_types, mock_df_to_excel, processor, mock_query_context | ||
): | ||
df = pd.DataFrame(columns=["col1", "col2"]) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.XLSX | ||
mock_df_to_excel.return_value = b"binary data empty" | ||
result = processor.get_data(df, coltypes) | ||
assert result == b"binary data empty" | ||
mock_apply_column_types.assert_called_once_with(df, coltypes) | ||
mock_df_to_excel.assert_called_once_with(df) | ||
|
||
|
||
def test_get_data_nan_values_json(processor, mock_query_context): | ||
df = pd.DataFrame({"col1": [1, np.nan, 3], "col2": ["a", "b", "c"]}) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.JSON | ||
result = processor.get_data(df, coltypes) | ||
assert result[0]["col1"] == 1 | ||
assert pd.isna(result[1]["col1"]) | ||
assert result[2]["col1"] == 3 | ||
|
||
|
||
def test_get_data_invalid_input(processor, mock_query_context): | ||
df = "not a dataframe" | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.JSON | ||
with pytest.raises(AttributeError): | ||
processor.get_data(df, coltypes) | ||
|
||
|
||
def test_get_data_default_format_when_result_format_is_none( | ||
processor, mock_query_context | ||
): | ||
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]}) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = None | ||
result = processor.get_data(df, coltypes) | ||
expected = [ | ||
{"col1": 1, "col2": "a"}, | ||
{"col1": 2, "col2": "b"}, | ||
{"col1": 3, "col2": "c"}, | ||
] | ||
assert result == expected | ||
|
||
|
||
def fake_apply_column_types(df, coltypes): | ||
if len(coltypes) != len(df.columns): | ||
raise ValueError("Mismatch between column types and dataframe columns") | ||
return df | ||
|
||
|
||
@patch("superset.common.query_context_processor.excel.df_to_excel") | ||
@patch( | ||
"superset.common.query_context_processor.excel.apply_column_types", | ||
side_effect=fake_apply_column_types, | ||
) | ||
def test_get_data_invalid_coltypes_length_xlsx( | ||
mock_apply_column_types, mock_df_to_excel, processor, mock_query_context | ||
): | ||
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]}) | ||
coltypes = [GenericDataType.NUMERIC] # Mismatched length | ||
mock_query_context.result_format = ChartDataResultFormat.XLSX | ||
with pytest.raises( | ||
ValueError, match="Mismatch between column types and dataframe columns" | ||
): | ||
processor.get_data(df, coltypes) | ||
|
||
|
||
def test_get_data_does_not_mutate_dataframe(processor, mock_query_context): | ||
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]}) | ||
original_df = df.copy(deep=True) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.JSON | ||
_ = processor.get_data(df, coltypes) | ||
pd.testing.assert_frame_equal(df, original_df) | ||
|
||
|
||
@patch( | ||
"superset.common.query_context_processor.excel.apply_column_types", | ||
side_effect=ValueError("Conversion error"), | ||
) | ||
def test_get_data_xlsx_apply_column_types_error( | ||
mock_apply_column_types, processor, mock_query_context | ||
): | ||
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]}) | ||
coltypes = [GenericDataType.NUMERIC, GenericDataType.STRING] | ||
mock_query_context.result_format = ChartDataResultFormat.XLSX | ||
with pytest.raises(ValueError, match="Conversion error"): | ||
processor.get_data(df, coltypes) |