Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add histogram aggregation function #8724

Merged
merged 7 commits into from
May 25, 2022
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
import com.fasterxml.jackson.annotation.JsonIgnore;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonPropertyOrder;
import it.unimi.dsi.fastutil.doubles.DoubleArrayList;
import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.io.IOException;
Expand Down Expand Up @@ -450,6 +451,8 @@ public Serializable convertAndFormat(Object value) {
private static double[] toDoubleArray(Object value) {
if (value instanceof double[]) {
return (double[]) value;
} else if (value instanceof DoubleArrayList) {
return ((DoubleArrayList) value).elements();
} else if (value instanceof int[]) {
int[] intValues = (int[]) value;
int length = intValues.length;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -266,12 +266,15 @@ public static AggregationFunction getAggregationFunction(FunctionContext functio
queryContext.getLimit());
case STUNION:
return new StUnionAggregationFunction(firstArgument);
case HISTOGRAM:
return new HistogramAggregationFunction(arguments);
default:
throw new IllegalArgumentException();
}
}
} catch (Exception e) {
throw new BadQueryRequestException("Invalid aggregation function: " + function);
throw new BadQueryRequestException(
"Invalid aggregation function: " + function + "; Reason: " + e.getMessage());
}
}

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,361 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.pinot.core.query.aggregation.function;

import com.google.common.base.Preconditions;
import it.unimi.dsi.fastutil.doubles.DoubleArrayList;
import java.util.List;
import java.util.Map;
import org.apache.pinot.common.request.context.ExpressionContext;
import org.apache.pinot.common.utils.DataSchema.ColumnDataType;
import org.apache.pinot.core.common.BlockValSet;
import org.apache.pinot.core.query.aggregation.AggregationResultHolder;
import org.apache.pinot.core.query.aggregation.ObjectAggregationResultHolder;
import org.apache.pinot.core.query.aggregation.groupby.GroupByResultHolder;
import org.apache.pinot.core.query.aggregation.groupby.ObjectGroupByResultHolder;
import org.apache.pinot.core.query.aggregation.utils.DoubleVectorOpUtils;
import org.apache.pinot.segment.spi.AggregationFunctionType;


/**
* Histogram for single-value numerical columns
* usage example:
* `Histogram(columnName, ARRAY[0,1,10,100])` to specify bins [0,1), [1,10), [10,1000] or
* `Histogram(columnName, 0, 1000, 10)` to specify 10 equal-length bins [0,100), [100,200), ..., [900,1000]
*/
public class HistogramAggregationFunction extends BaseSingleInputAggregationFunction<DoubleArrayList, DoubleArrayList> {

private static final String ARRAY_CONSTRUCTOR = "arrayvalueconstructor";
private static final int INVALID_BIN = -1;
double[] _bucketEdges;
boolean _isEqualLength = false;
double _lower;
double _upper;
double _binLength;

public HistogramAggregationFunction(List<ExpressionContext> arguments) {
super(arguments.get(0));
int numArguments = arguments.size();
Preconditions.checkArgument(numArguments == 4 || numArguments == 2, "Histogram expects 2 or 4 arguments, got: %s;"
+ " usage example: `Histogram(columnName, ARRAY[0,1,10,100])` to specify bins [0,1), [1,10), [10,1000] or "
+ "`Histogram(columnName, 0, 1000, 10)` to specify 10 equal-length bins "
+ "[0,100), [100,200), ..., [900,1000]", numArguments);
if (numArguments == 2) {
ExpressionContext arrayExpression = arguments.get(1);
Preconditions.checkArgument(
(arrayExpression.getType() == ExpressionContext.Type.FUNCTION) && (arrayExpression.getFunction()
.getFunctionName().equals(ARRAY_CONSTRUCTOR)),
"Please use the format of `Histogram(columnName, ARRAY[1,10,100])` to specify the bin edges");
_bucketEdges = parseVector(arrayExpression.getFunction().getArguments());
_lower = _bucketEdges[0];
_upper = _bucketEdges[_bucketEdges.length - 1];
} else {
_isEqualLength = true;
_lower = Double.parseDouble(arguments.get(1).getLiteral());
_upper = Double.parseDouble(arguments.get(2).getLiteral());
int numBins = Integer.parseInt(arguments.get(3).getLiteral());
Preconditions.checkArgument(_upper > _lower,
"The right most edge must be greater than left most edge, given %s and %s", _lower, _upper);
Preconditions.checkArgument(numBins > 0, "The number of bins must be greater than zero, given %s", numBins);
_bucketEdges = new double[numBins + 1];
_bucketEdges[0] = _lower;
_bucketEdges[numBins] = _upper;
_binLength = (_upper - _lower) / numBins;
for (int i = 1; i < numBins; i++) {
_bucketEdges[i] = i * _binLength + _lower;
}
}
}

int getNumBins() {
return _bucketEdges.length - 1;
}

int getNumEdges() {
return _bucketEdges.length;
}

private double[] parseVector(List<ExpressionContext> arrayStr) {
int len = arrayStr.size();
Preconditions.checkArgument(len > 1, "The number of bin edges must be greater than 1");
double[] ret = new double[len];
for (int i = 0; i < len; i++) {
ret[i] = Double.parseDouble(arrayStr.get(i).getLiteral());
if (i > 0) {
Preconditions.checkState(ret[i] > ret[i - 1], "The bin edges must be strictly increasing");
}
}
return ret;
}

/**
* Find the bin id for the input value. Use division for equal-length bins, and binary search otherwise.
* @param val input value
* @return bin id
*/
private int getBinId(double val) {
if (val > _upper || val < _lower) {
return INVALID_BIN;
}
if (val == _upper) {
return getNumBins() - 1;
}
int id;
if (_isEqualLength) {
id = (int) Math.floor((val - _lower) / _binLength);
} else {
int i = 0;
int j = this.getNumEdges() - 1;
while (i < j) {
int mid = (i + j + 1) / 2;
if (_bucketEdges[mid] > val) {
j = mid - 1;
} else {
i = mid;
}
}
id = i;
}
return id;
}

@Override
public AggregationFunctionType getType() {
return AggregationFunctionType.HISTOGRAM;
}

@Override
public AggregationResultHolder createAggregationResultHolder() {
return new ObjectAggregationResultHolder();
}

@Override
public GroupByResultHolder createGroupByResultHolder(int initialCapacity, int maxCapacity) {
return new ObjectGroupByResultHolder(initialCapacity, maxCapacity);
}

@Override
public DoubleArrayList extractAggregationResult(AggregationResultHolder aggregationResultHolder) {
DoubleArrayList aggregationResultHolderResult = aggregationResultHolder.getResult();
int count = aggregationResultHolderResult.size();
if (count < 1) {
throw new IllegalStateException("histogram result shouldn't be empty!");
} else {
return aggregationResultHolderResult;
}
}

@Override
public DoubleArrayList extractGroupByResult(GroupByResultHolder groupByResultHolder, int groupKey) {
return groupByResultHolder.getResult(groupKey);
}

@Override
public DoubleArrayList merge(DoubleArrayList intermediateResult1, DoubleArrayList intermediateResult2) {
DoubleVectorOpUtils.vectorAdd(intermediateResult1, intermediateResult2);
return intermediateResult1;
}

@Override
public ColumnDataType getIntermediateResultColumnType() {
return ColumnDataType.OBJECT;
}

@Override
public ColumnDataType getFinalResultColumnType() {
return ColumnDataType.DOUBLE_ARRAY;
}

@Override
public DoubleArrayList extractFinalResult(DoubleArrayList doubleArrayList) {
int count = doubleArrayList.size();
if (count < 1L) {
throw new IllegalStateException("histogram result shouldn't be empty!");
} else {
return new DoubleArrayList(doubleArrayList.elements());
}
}

@Override
public void aggregateGroupByMV(int length, int[][] groupKeysArray, GroupByResultHolder groupByResultHolder,
Map<ExpressionContext, BlockValSet> blockValSetMap) {
BlockValSet blockValSet = blockValSetMap.get(_expression);
Preconditions.checkState(blockValSet.isSingleValue(), "Histogram currently only supports single-valued column");
switch (blockValSet.getValueType().getStoredType()) {
case INT: {
int[] values = blockValSet.getIntValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
double value = values[i];
for (int groupKey : groupKeysArray[i]) {
setGroupByResult(groupKey, groupByResultHolder, value);
}
}
break;
}
case LONG: {
long[] values = blockValSet.getLongValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
double value = values[i];
for (int groupKey : groupKeysArray[i]) {
setGroupByResult(groupKey, groupByResultHolder, value);
}
}
break;
}
case FLOAT: {
float[] values = blockValSet.getFloatValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
double value = values[i];
for (int groupKey : groupKeysArray[i]) {
setGroupByResult(groupKey, groupByResultHolder, value);
}
}
break;
}
case DOUBLE: {
double[] values = blockValSet.getDoubleValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
double value = values[i];
for (int groupKey : groupKeysArray[i]) {
setGroupByResult(groupKey, groupByResultHolder, value);
}
}
break;
}
default:
throw new IllegalStateException("Cannot compute histogram for non-numeric type: " + blockValSet.getValueType());
}
}

@Override
public void aggregateGroupBySV(int length, int[] groupKeyArray, GroupByResultHolder groupByResultHolder,
Map<ExpressionContext, BlockValSet> blockValSetMap) {
BlockValSet blockValSet = blockValSetMap.get(_expression);
switch (blockValSet.getValueType().getStoredType()) {
case INT: {
int[] values = blockValSet.getIntValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
setGroupByResult(groupKeyArray[i], groupByResultHolder, values[i]);
}
break;
}
case LONG: {
long[] values = blockValSet.getLongValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
setGroupByResult(groupKeyArray[i], groupByResultHolder, values[i]);
}
break;
}
case FLOAT: {
float[] values = blockValSet.getFloatValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
setGroupByResult(groupKeyArray[i], groupByResultHolder, values[i]);
}
break;
}
case DOUBLE: {
double[] values = blockValSet.getDoubleValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
setGroupByResult(groupKeyArray[i], groupByResultHolder, values[i]);
}
break;
}
default:
throw new IllegalStateException("Cannot compute histogram for non-numeric type: " + blockValSet.getValueType());
}
}

protected void setGroupByResult(int groupKey, GroupByResultHolder groupByResultHolder, double val) {
int binID = getBinId(val);
DoubleArrayList byResultHolderResult = groupByResultHolder.getResult(groupKey);
if (byResultHolderResult == null) {
byResultHolderResult = DoubleVectorOpUtils.createAndInitialize(getNumBins());
groupByResultHolder.setValueForKey(groupKey, byResultHolderResult);
}
if (binID != INVALID_BIN) {
DoubleVectorOpUtils.incrementElementByOne(byResultHolderResult, binID);
}
}

@Override
public void aggregate(int length, AggregationResultHolder aggregationResultHolder,
Map<ExpressionContext, BlockValSet> blockValSetMap) {
BlockValSet blockValSet = blockValSetMap.get(_expression);
//TODO: Add MV support for histogram
Preconditions.checkState(blockValSet.isSingleValue(), "Histogram currently only supports single-valued column");
double[] histogram = new double[this.getNumBins()];
switch (blockValSet.getValueType().getStoredType()) {
case INT: {
int[] values = blockValSet.getIntValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
int binId = this.getBinId(values[i]);
if (binId != INVALID_BIN) {
histogram[binId] += 1;
}
}
setAggregationResult(aggregationResultHolder, histogram);
break;
}
case LONG: {
long[] values = blockValSet.getLongValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
int binId = this.getBinId(values[i]);
if (binId != INVALID_BIN) {
histogram[binId] += 1;
}
}
setAggregationResult(aggregationResultHolder, histogram);
break;
}
case FLOAT: {
float[] values = blockValSet.getFloatValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
int binId = this.getBinId(values[i]);
if (binId != INVALID_BIN) {
histogram[binId] += 1;
}
}
setAggregationResult(aggregationResultHolder, histogram);
break;
}
case DOUBLE: {
double[] values = blockValSet.getDoubleValuesSV();
for (int i = 0; i < length && i < values.length; i++) {
int binId = this.getBinId(values[i]);
if (binId != INVALID_BIN) {
histogram[binId] += 1;
}
}
setAggregationResult(aggregationResultHolder, histogram);
break;
}
default:
throw new IllegalStateException("Cannot compute histogram for non-numeric type: " + blockValSet.getValueType());
}
}

protected void setAggregationResult(AggregationResultHolder aggregationResultHolder, double[] histogram) {
DoubleArrayList aggregatedHistogram = aggregationResultHolder.getResult();
if (aggregatedHistogram == null) {
aggregationResultHolder.setValue(DoubleVectorOpUtils.createAndInitialize(histogram));
} else {
DoubleVectorOpUtils.vectorAdd(aggregatedHistogram, histogram);
}
}
}
Loading