Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.x] ONNX support adaptiveAveragePooling2D and update Softmax to support temperature #19736

Merged
merged 8 commits into from
Jan 19, 2021
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 32 additions & 5 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -186,6 +186,8 @@ def create_tensor(shape_list, shape_name, initializer, dtype='int64'):
data_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[shape_np.dtype]
dims = np.shape(shape_np)
tensor_node = onnx.helper.make_tensor_value_info(shape_name, data_type, dims)
if dtype == np.float16:
shape_list = shape_np.view(dtype=np.uint16).flatten().tolist()
initializer.append(
onnx.helper.make_tensor(
name=shape_name,
Expand Down Expand Up @@ -859,15 +861,21 @@ def convert_softmax(node, **kwargs):
name, input_nodes, attrs = get_inputs(node, kwargs)

axis = int(attrs.get("axis", -1))
temperature = attrs.get("temperature", None)
if temperature and float(temperature) != 1.0:
raise NotImplementedError("Temperature is not supported for now.")
use_length = attrs.get("use_length", None)
temperature = str(attrs.get("temperature", 'None'))
if temperature == 'None':
temperature = 1.
else:
temperature = float(temperature)

use_length = str(attrs.get("use_length", 'None'))
input_type = kwargs["in_type"]
dtype = onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[input_type]
data = input_nodes[0]

nodes = [
make_node("Exp", [data], [name+"_exp_out"]),
create_tensor([temperature], name+"_tmp", kwargs["initializer"], dtype=dtype),
make_node("Div", [data, name+"_tmp"], [name+'_data']),
make_node("Exp", [name+'_data'], [name+"_exp_out"]),
make_node("ReduceSum", [name+"_exp_out"], [name+"_rsum_out"], axes=[axis], keepdims=1)
]
if len(input_nodes) == 1:
Expand Down Expand Up @@ -3023,3 +3031,22 @@ def convert_contrib_box_decode(node, **kwargs):
]

return nodes

@mx_op.register("_contrib_AdaptiveAvgPooling2D")
def convert_contrib_AdaptiveAvgPooling2D(node, **kwargs):
"""Map MXNet's _contrib_BilinearResize2D operator attributes to onnx's operator.
"""
from onnx.helper import make_node
name, input_nodes, attrs = get_inputs(node, kwargs)

output_size = attrs.get('output_size', '1')
output_size = convert_string_to_list(output_size)

if len(output_size) <= 2:
waytrue17 marked this conversation as resolved.
Show resolved Hide resolved
if output_size[0] != 1 or (len(output_size) == 2 and output_size[1] != 1):
raise NotImplementedError("_contrib_AdaptiveAvgPooling2D operator with output_size != 1 \
not yet implemented.")
nodes = [
make_node("GlobalAveragePool", [input_nodes[0]], [name], name=name)
]
return nodes
23 changes: 18 additions & 5 deletions tests/python-pytest/onnx/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,17 +338,18 @@ def test_onnx_export_cast(tmp_path, src_dtype, dst_dtype, shape):


@pytest.mark.parametrize('dtype', ['float16', 'float32'])
def test_onnx_export_softmax(tmp_path, dtype):
@pytest.mark.parametrize('temperature', [.1, 1., 10.])
waytrue17 marked this conversation as resolved.
Show resolved Hide resolved
def test_onnx_export_softmax(tmp_path, dtype, temperature):
x = mx.nd.random.uniform(0, 1, (2, 3, 4), dtype=dtype)
M1 = def_model('softmax')
M1 = def_model('softmax', temperature=temperature)
op_export_test('softmax_1', M1, [x], tmp_path)
M2 = def_model('softmax', use_length=True, axis=0)
M2 = def_model('softmax', use_length=True, axis=0, temperature=temperature)
l2 = mx.nd.array([[2,0,2,1],[1,1,2,1], [0,0,0,1]], dtype=int)
op_export_test('softmax_2', M2, [x, l2], tmp_path)
M3 = def_model('softmax', use_length=True, axis=-1)
M3 = def_model('softmax', use_length=True, axis=-1, temperature=temperature)
l3 = mx.nd.array([[2,0,4],[0,0,0]], dtype=int)
op_export_test('softmax_3', M3, [x, l3], tmp_path)
M4 = def_model('softmax', use_length=True, axis=1)
M4 = def_model('softmax', use_length=True, axis=1, temperature=temperature)
l4 = mx.nd.array([[2,0,3,1],[0,1,0,0]], dtype=int)
op_export_test('softmax_4', M4, [x, l4], tmp_path)

Expand Down Expand Up @@ -421,3 +422,15 @@ def test_onnx_export_contrib_box_decode(tmp_path, dtype, fmt, clip):
op_export_test('contrib_box_decode', M1, [data, anchors], tmp_path)
M2 = def_model('contrib.box_decode', format=fmt, clip=clip, std0=0.3, std1=1.4, std2=0.5, std3=1.6)
op_export_test('contrib_box_decode', M1, [data, anchors], tmp_path)

@pytest.mark.parametrize('dtype', ['float16', 'float32'])
def test_onnx_export_contrib_AdaptiveAvgPooling2D(tmp_path, dtype):
x = mx.nd.random.uniform(0, 1, (1, 2, 3, 4), dtype=dtype)
M1 = def_model('contrib.AdaptiveAvgPooling2D')
op_export_test('contrib_AdaptiveAvgPooling2D', M1, [x], tmp_path)
M2 = def_model('contrib.AdaptiveAvgPooling2D', output_size=1)
op_export_test('contrib_AdaptiveAvgPooling2D', M2, [x], tmp_path)
M3 = def_model('contrib.AdaptiveAvgPooling2D', output_size=[1])
op_export_test('contrib_AdaptiveAvgPooling2D', M3, [x], tmp_path)
M4 = def_model('contrib.AdaptiveAvgPooling2D', output_size=[1,1])
op_export_test('contrib_AdaptiveAvgPooling2D', M4, [x], tmp_path)