Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

add ffi full_like, binary ops, benchmark test #17811

Merged
merged 1 commit into from
Mar 18, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions benchmark/python/ffi/benchmark_ffi.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,22 @@ def prepare_workloads():
OpArgMngr.add_workload("add", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("linalg.svd", pool['3x3'])
OpArgMngr.add_workload("split", pool['3x3'], (0, 1, 2), axis=1)
OpArgMngr.add_workload("subtract", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("multiply", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("mod", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("remainder", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("divide", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("true_divide", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("power", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("lcm", pool['2x2'].astype('int32'), pool['2x2'].astype('int32'))
OpArgMngr.add_workload("diff", pool['2x2'], n=1, axis=-1)
OpArgMngr.add_workload("nonzero", pool['2x2'])
OpArgMngr.add_workload("tril", pool['2x2'], k=0)
OpArgMngr.add_workload("expand_dims", pool['2x2'], axis=0)
OpArgMngr.add_workload("broadcast_to", pool['2x2'], (2, 2, 2))
OpArgMngr.add_workload("full_like", pool['2x2'], 2)
OpArgMngr.add_workload("zeros_like", pool['2x2'])
OpArgMngr.add_workload("ones_like", pool['2x2'])
OpArgMngr.add_workload("random.uniform", low=0, high=1, size=1)
OpArgMngr.add_workload("where", pool['2x3'], pool['2x3'], pool['2x1'])
OpArgMngr.add_workload("may_share_memory", pool['2x3'][:0], pool['2x3'][:1])
Expand Down
57 changes: 34 additions & 23 deletions python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,9 +212,7 @@ def zeros_like(a, dtype=None, order='C', ctx=None, out=None):
"""
if order != 'C':
raise NotImplementedError
if ctx is None:
ctx = current_context()
return _npi.full_like(a, fill_value=0, dtype=dtype, ctx=ctx, out=out)
return full_like(a, 0, dtype=dtype, order=order, ctx=ctx, out=out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -270,11 +268,7 @@ def ones_like(a, dtype=None, order='C', ctx=None, out=None):
>>> np.ones_like(y)
array([1., 1., 1.], dtype=float64)
"""
if order != 'C':
raise NotImplementedError
if ctx is None:
ctx = current_context()
return _npi.full_like(a, fill_value=1, dtype=dtype, ctx=ctx, out=out)
return full_like(a, 1, dtype=dtype, order=order, ctx=ctx, out=out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -433,11 +427,15 @@ def full_like(a, fill_value, dtype=None, order='C', ctx=None, out=None): # pylin
"""
if order != 'C':
raise NotImplementedError
if ctx is None:
ctx = current_context()
if isinstance(fill_value, bool):
fill_value = int(fill_value)
return _npi.full_like(a, fill_value=fill_value, dtype=dtype, ctx=ctx, out=out)
if ctx is None:
ctx = str(current_context())
else:
ctx = str(ctx)
if dtype is not None and not isinstance(dtype, str):
dtype = _np.dtype(dtype).name
return _api_internal.full_like(a, fill_value, dtype, ctx, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -1025,8 +1023,9 @@ def subtract(x1, x2, out=None, **kwargs):
* If only one of the inputs is floating number type, the result is that type.
* If both inputs are of integer types (including boolean), not supported yet.
"""
return _ufunc_helper(x1, x2, _npi.subtract, _np.subtract, _npi.subtract_scalar,
_npi.rsubtract_scalar, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.subtract(x1, x2, out=out)
return _api_internal.subtract(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -1060,7 +1059,9 @@ def multiply(x1, x2, out=None, **kwargs):
* If only one of the inputs is floating number type, the result is that type.
* If both inputs are of integer types (including boolean), not supported yet.
"""
return _ufunc_helper(x1, x2, _npi.multiply, _np.multiply, _npi.multiply_scalar, None, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.multiply(x1, x2, out=out)
return _api_internal.multiply(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -1095,8 +1096,9 @@ def divide(x1, x2, out=None, **kwargs):
* If only one of the inputs is floating number type, the result is that type.
* If both inputs are of integer types (including boolean), the output is of float32 type.
"""
return _ufunc_helper(x1, x2, _npi.true_divide, _np.divide, _npi.true_divide_scalar,
_npi.rtrue_divide_scalar, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.divide(x1, x2, out=out)
return _api_internal.true_divide(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -1133,8 +1135,9 @@ def true_divide(x1, x2, out=None):
* If only one of the inputs is floating number type, the result is that type.
* If both inputs are of integer types (including boolean), the output is of float32 type.
"""
return _ufunc_helper(x1, x2, _npi.true_divide, _np.divide, _npi.true_divide_scalar,
_npi.rtrue_divide_scalar, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.true_divide(x1, x2, out=out)
return _api_internal.true_divide(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand All @@ -1161,7 +1164,9 @@ def mod(x1, x2, out=None, **kwargs):
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
"""
return _ufunc_helper(x1, x2, _npi.mod, _np.mod, _npi.mod_scalar, _npi.rmod_scalar, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.mod(x1, x2, out=out)
return _api_internal.mod(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -1349,7 +1354,9 @@ def remainder(x1, x2, out=None):
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
"""
return _ufunc_helper(x1, x2, _npi.mod, _np.mod, _npi.mod_scalar, _npi.rmod_scalar, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
_np.mod(x1, x2, out=out)
return _api_internal.mod(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -1377,7 +1384,9 @@ def power(x1, x2, out=None, **kwargs):
The bases in x1 raised to the exponents in x2.
This is a scalar if both x1 and x2 are scalars.
"""
return _ufunc_helper(x1, x2, _npi.power, _np.power, _npi.power_scalar, _npi.rpower_scalar, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.power(x1, x2, out=out)
return _api_internal.power(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -1976,7 +1985,9 @@ def lcm(x1, x2, out=None, **kwargs):
>>> np.lcm(np.arange(6, dtype=int), 20)
array([ 0, 20, 20, 60, 20, 20], dtype=int64)
"""
return _ufunc_helper(x1, x2, _npi.lcm, _np.lcm, _npi.lcm_scalar, None, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.lcm(x1, x2, out=out)
return _api_internal.lcm(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -6658,7 +6669,7 @@ def nonzero(a):
>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2], dtype=int64), array([0, 1, 2, 0, 1, 2], dtype=int64))
"""
out = _npi.nonzero(a).transpose()
out = _api_internal.nonzero(a).transpose()
return tuple([out[i] for i in range(len(out))])


Expand Down
3 changes: 2 additions & 1 deletion src/api/operator/numpy/np_broadcast_reduce_op_value.cc
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,8 @@ MXNET_REGISTER_API("_npi.broadcast_to")

int num_outputs = 0;
NDArray* inputs[] = {args[0].operator mxnet::NDArray*()};
auto ndoutputs = Invoke(op, &attrs, 1, inputs, &num_outputs, nullptr);
int num_inputs = 1;
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = ndoutputs[0];
});

Expand Down
3 changes: 2 additions & 1 deletion src/api/operator/numpy/np_diff_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,8 @@ MXNET_REGISTER_API("_npi.diff")

int num_outputs = 0;
NDArray* inputs[] = {args[0].operator mxnet::NDArray*()};
auto ndoutputs = Invoke(op, &attrs, 1, inputs, &num_outputs, nullptr);
int num_inputs = 1;
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = ndoutputs[0];
});

Expand Down
52 changes: 52 additions & 0 deletions src/api/operator/numpy/np_elemwise_broadcast_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -36,4 +36,56 @@ MXNET_REGISTER_API("_npi.add")
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

MXNET_REGISTER_API("_npi.subtract")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_subtract");
const nnvm::Op* op_scalar = Op::Get("_npi_subtract_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_rsubtract_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

MXNET_REGISTER_API("_npi.multiply")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_multiply");
const nnvm::Op* op_scalar = Op::Get("_npi_multiply_scalar");
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

MXNET_REGISTER_API("_npi.true_divide")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_true_divide");
const nnvm::Op* op_scalar = Op::Get("_npi_true_divide_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_rtrue_divide_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

MXNET_REGISTER_API("_npi.mod")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_mod");
const nnvm::Op* op_scalar = Op::Get("_npi_mod_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_rmod_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

MXNET_REGISTER_API("_npi.power")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_power");
const nnvm::Op* op_scalar = Op::Get("_npi_power_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_rpower_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

MXNET_REGISTER_API("_npi.lcm")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_lcm");
const nnvm::Op* op_scalar = Op::Get("_npi_lcm_scalar");
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

} // namespace mxnet
33 changes: 33 additions & 0 deletions src/api/operator/numpy/np_init_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
* \file np_init_op.cc
* \brief Implementation of the API of functions in src/operator/numpy/np_init_op.cc
*/
#include <dmlc/optional.h>
#include <mxnet/api_registry.h>
#include <mxnet/runtime/packed_func.h>
#include "../utils.h"
Expand Down Expand Up @@ -55,4 +56,36 @@ MXNET_REGISTER_API("_npi.zeros")
*ret = ndoutputs[0];
});

MXNET_REGISTER_API("_npi.full_like")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_full_like");
nnvm::NodeAttrs attrs;
op::FullLikeOpParam param;
param.fill_value = args[1].operator double();
if (args[2].type_code() == kNull) {
param.dtype = dmlc::nullopt;
} else {
param.dtype = String2MXNetTypeWithBool(args[2].operator std::string());
}
attrs.parsed = std::move(param);
attrs.op = op;
if (args[3].type_code() != kNull) {
attrs.dict["ctx"] = args[3].operator std::string();
}
SetAttrDict<op::FullLikeOpParam>(&attrs);
NDArray* out = args[4].operator mxnet::NDArray*();
NDArray** outputs = out == nullptr ? nullptr : &out;
int num_outputs = out != nullptr;
NDArray* inputs[] = {args[0].operator mxnet::NDArray*()};
int num_inputs = 1;
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, outputs);
if (out) {
*ret = PythonArg(4);
} else {
*ret = ndoutputs[0];
}
*ret = ndoutputs[0];
});

} // namespace mxnet
3 changes: 2 additions & 1 deletion src/api/operator/numpy/np_matrix_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,8 @@ MXNET_REGISTER_API("_npi.expand_dims")

int num_outputs = 0;
NDArray* inputs[] = {args[0].operator mxnet::NDArray*()};
auto ndoutputs = Invoke(op, &attrs, 1, inputs, &num_outputs, nullptr);
int num_inputs = 1;
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = ndoutputs[0];
});

Expand Down
45 changes: 45 additions & 0 deletions src/api/operator/numpy/np_nonzero_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file np_nonzero_op.cc
* \brief Implementation of the API of functions in src/operator/numpy/np_nonzero_op.cc
*/
#include <mxnet/api_registry.h>
#include <mxnet/runtime/packed_func.h>
#include "../utils.h"

namespace mxnet {

MXNET_REGISTER_API("_npi.nonzero")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_nonzero");
nnvm::NodeAttrs attrs;

attrs.op = op;

int num_inputs = 1;
int num_outputs = 0;
NDArray* inputs[] = {args[0].operator mxnet::NDArray*()};
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = ndoutputs[0];
});

} // namespace mxnet
3 changes: 2 additions & 1 deletion src/api/operator/numpy/np_tril_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,8 @@ MXNET_REGISTER_API("_npi.tril")

int num_outputs = 0;
NDArray* inputs[] = {args[0].operator mxnet::NDArray*()};
auto ndoutputs = Invoke(op, &attrs, 1, inputs, &num_outputs, nullptr);
int num_inputs = 1;
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = ndoutputs[0];
});

Expand Down
11 changes: 11 additions & 0 deletions src/operator/tensor/init_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,17 @@ struct FullLikeOpParam : public dmlc::Parameter<FullLikeOpParam> {
MXNET_ADD_ALL_TYPES_WITH_BOOL
.describe("Target data type.");
}
void SetAttrDict(std::unordered_map<std::string, std::string>* dict) {
std::ostringstream fill_value_s, dtype_s;
fill_value_s << fill_value;
dtype_s << dtype;
(*dict)["fill_value"] = fill_value_s.str();
if (dtype.has_value()) {
(*dict)["dtype"] = MXNetTypeWithBool2String(dtype.value());
} else {
(*dict)["dtype"] = dtype_s.str();
}
}
};

/*! \brief Infer type of FullLikeOpCompute*/
Expand Down