Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[Numpy] Benchmark for new ffi #17780

Merged
merged 1 commit into from
Mar 10, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
123 changes: 123 additions & 0 deletions benchmark/python/ffi/benchmark_ffi.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import timeit
import itertools
import argparse
import os

class OpArgMngr(object):
"""Operator argument manager for storing operator workloads."""
args = {}

@staticmethod
def add_workload(funcname, *args, **kwargs):
if "_specifier" not in kwargs:
_specifier = funcname
else:
_specifier = kwargs["_specififer"]
del kwargs["_specififer"]
if _specifier in OpArgMngr.args:
raise ValueError("duplicate {}".format(_specifier))
OpArgMngr.args[_specifier] = {'args': args, 'kwargs': kwargs, 'funcname': funcname}


def generate_workloads():
array_pool = {}
shapes = []
for ndim in range(4):
shapes.extend(list(itertools.product(range(4), repeat=ndim)))
for shape in shapes:
name = 'x'.join(str(i) for i in shape)
if name in array_pool:
raise ValueError("duplicate array {}".format(name))
array_pool[name] = dnp.ones(shape)
return array_pool


def prepare_workloads():
pool = generate_workloads()
OpArgMngr.add_workload("zeros", (2, 2))
OpArgMngr.add_workload("tensordot", pool['2x2'], pool['2x2'], ((1, 0), (0, 1)))
OpArgMngr.add_workload("cumsum", pool['3x2'], axis=0, out=pool['3x2'])
OpArgMngr.add_workload("add", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("random.uniform", low=0, high=1, size=1)


def benchmark_helper(f, *args, **kwargs):
number = 10000
return timeit.timeit(lambda: f(*args, **kwargs), number=number) / number


def get_op(module, funcname):
funcname = funcname.split(".")
for fname in funcname:
module = getattr(module, fname)
return module


def run_benchmark(packages):
results = {}
for (k, v) in OpArgMngr.args.items():
result = {}
for (name, package) in packages.items():
print('{}.{} running...'.format(name, k))
op = get_op(package["module"], v["funcname"])
args = [package["data"](arg) for arg in v["args"]]
kwargs = {k: package["data"](v) for (k, v) in v["kwargs"].items()}
benchmark = benchmark_helper(op, *args, **kwargs)
result[name] = benchmark
results[k] = result
return results


def show_results(results):
print("{:>24}{:>24}{:>24}".format("name", "package", "time(us)"))
for (specifier, d) in results.items():
for (k, v) in d.items():
print("{:>24}{:>24}{:>24}".format(specifier, k, v * 10 ** 6))


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('ffi_type')
parsed = parser.parse_args()
if parsed.ffi_type == "cython":
os.environ['MXNET_ENABLE_CYTHON'] = '1'
os.environ['MXNET_ENFORCE_CYTHON'] = '1'
elif parsed.ffi_type == "ctypes":
os.environ['MXNET_ENABLE_CYTHON'] = '0'
else:
raise ValueError("unknown ffi_type {}",format(parsed.ffi_type))
os.environ["MXNET_ENGINE_TYPE"] = "NaiveEngine"
import mxnet as mx
import numpy as onp
from mxnet import np as dnp

mx.npx.set_np()
packages = {
"onp": {
"module": onp,
"data": lambda arr: arr.asnumpy() if isinstance(arr, dnp.ndarray) else arr
},
"dnp": {
"module": dnp,
"data": lambda arr: arr
}
}
prepare_workloads()
results = run_benchmark(packages)
show_results(results)