Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
* Fix windows oversize by adding files
Browse files Browse the repository at this point in the history
  • Loading branch information
hanke580 committed Mar 18, 2020
1 parent 281946d commit de10158
Show file tree
Hide file tree
Showing 8 changed files with 232 additions and 146 deletions.
3 changes: 3 additions & 0 deletions benchmark/python/ffi/benchmark_ffi.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,9 @@ def prepare_workloads():
OpArgMngr.add_workload("ones_like", pool['2x2'])
OpArgMngr.add_workload("random.uniform", low=0, high=1, size=1)
OpArgMngr.add_workload("where", pool['2x3'], pool['2x3'], pool['2x1'])
OpArgMngr.add_workload("fmax", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("fmin", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("fmod", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("may_share_memory", pool['2x3'][:0], pool['2x3'][:1])


Expand Down
2 changes: 2 additions & 0 deletions python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -1198,6 +1198,7 @@ def fmod(x1, x2, out=None, **kwargs):
_np.fmod(x1, x2, out=out)
return _api_internal.fmod(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
def delete(arr, obj, axis=None):
"""
Expand Down Expand Up @@ -4415,6 +4416,7 @@ def fmax(x1, x2, out=None, **kwargs):
_np.fmax(x1, x2, out=out)
return _api_internal.fmax(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def minimum(x1, x2, out=None, **kwargs):
Expand Down
12 changes: 6 additions & 6 deletions python/mxnet/symbol/numpy/_symbol.py
Original file line number Diff line number Diff line change
Expand Up @@ -4148,7 +4148,12 @@ def minimum(x1, x2, out=None, **kwargs):


@set_module('mxnet.symbol.numpy')
<<<<<<< HEAD
@wrap_np_binary_func
def fmin(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.fmin, _np.fmin, _npi.fmin_scalar, None, out)


@set_module('mxnet.symbol.numpy')
def all(a, axis=None, out=None, keepdims=False):
"""
Test whether all array elements along a given axis evaluate to True.
Expand Down Expand Up @@ -4207,11 +4212,6 @@ def any(a, axis=None, out=None, keepdims=False):
in which case a reference to out is returned.
"""
return _npi.any(a, axis=axis, keepdims=keepdims, out=out)
=======
@wrap_np_binary_func
def fmin(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.fmin, _np.fmin, _npi.fmin_scalar, None, out)
>>>>>>> [Numpy] Add op fmax, fmin


@set_module('mxnet.symbol.numpy')
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,8 @@
*/

/*!
* \file np_elemwise_broadcast_op_extended.cc
* \brief Implementation of the API of functions in src/operator/numpy/np_elemwise_broadcast_op_extended.cc
* \file np_elemwise_broadcast_op_extended_sec.cc
* \brief Implementation of the API of functions in src/operator/numpy/np_elemwise_broadcast_op_extended_sec.cc
*/
#include <mxnet/api_registry.h>
#include <mxnet/runtime/packed_func.h>
Expand Down
93 changes: 0 additions & 93 deletions src/operator/numpy/np_elemwise_broadcast_op_extended.cc
Original file line number Diff line number Diff line change
Expand Up @@ -371,98 +371,5 @@ MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_rldexp_scalar)
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::rldexp_grad>);

MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(_npi_fmax)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::fmax>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmax"});

NNVM_REGISTER_OP(_backward_npi_fmax)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::ge,
mshadow_op::lt>);

MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_fmax_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::fmax>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmax_scalar"});

MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_fmax_scalar)
.add_argument("scalar", "float", "scalar value")
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::ge>);

MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(_npi_fmin)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::fmin>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmin"});

NNVM_REGISTER_OP(_backward_npi_fmin)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::le,
mshadow_op::gt>);

MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_fmin_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::fmin>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmin_scalar"});

MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_fmin_scalar)
.add_argument("scalar", "float", "scalar value")
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::le>);

MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(_npi_fmod)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::fmod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmod"});

NNVM_REGISTER_OP(_backward_npi_fmod)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::mod_grad,
mshadow_op::mod_rgrad>);

MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_fmod_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::fmod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmod_scalar"});

MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_fmod_scalar)
.add_argument("scalar", "float", "scalar value")
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::mod_grad>);

MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_rfmod_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::rfmod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_rfmod_scalar"});

MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_rfmod_scalar)
.add_argument("scalar", "float", "scalar value")
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::rmod_grad>);

} // namespace op
} // namespace mxnet
45 changes: 0 additions & 45 deletions src/operator/numpy/np_elemwise_broadcast_op_extended.cu
Original file line number Diff line number Diff line change
Expand Up @@ -116,50 +116,5 @@ NNVM_REGISTER_OP(_backward_npi_ldexp_scalar)
NNVM_REGISTER_OP(_backward_npi_rldexp_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Backward<gpu, mshadow_op::rldexp_grad>);

NNVM_REGISTER_OP(_npi_fmax)
.set_attr<FCompute>("FCompute<gpu>", BinaryBroadcastCompute<gpu, mshadow_op::fmax>);

NNVM_REGISTER_OP(_backward_npi_fmax)
.set_attr<FCompute>("FCompute<gpu>", BinaryBroadcastBackwardUseIn<gpu, mshadow_op::ge,
mshadow_op::lt>);

NNVM_REGISTER_OP(_npi_fmax_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Compute<gpu, mshadow_op::fmax>);

NNVM_REGISTER_OP(_backward_npi_fmax_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Backward<gpu, mshadow_op::ge>);

NNVM_REGISTER_OP(_npi_fmin)
.set_attr<FCompute>("FCompute<gpu>", BinaryBroadcastCompute<gpu, mshadow_op::fmin>);

NNVM_REGISTER_OP(_backward_npi_fmin)
.set_attr<FCompute>("FCompute<gpu>", BinaryBroadcastBackwardUseIn<gpu, mshadow_op::le,
mshadow_op::gt>);

NNVM_REGISTER_OP(_npi_fmin_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Compute<gpu, mshadow_op::fmin>);

NNVM_REGISTER_OP(_backward_npi_fmin_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Backward<gpu, mshadow_op::le>);

NNVM_REGISTER_OP(_npi_fmod)
.set_attr<FCompute>("FCompute<gpu>", BinaryBroadcastCompute<gpu, mshadow_op::fmod>);

NNVM_REGISTER_OP(_backward_npi_fmod)
.set_attr<FCompute>("FCompute<gpu>", BinaryBroadcastBackwardUseIn<gpu, mshadow_op::mod_grad,
mshadow_op::mod_rgrad>);

NNVM_REGISTER_OP(_npi_fmod_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Compute<gpu, mshadow_op::fmod>);

NNVM_REGISTER_OP(_backward_npi_fmod_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Backward<gpu, mshadow_op::mod_grad>);

NNVM_REGISTER_OP(_npi_rfmod_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Compute<gpu, mshadow_op::rfmod>);

NNVM_REGISTER_OP(_backward_npi_rfmod_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Backward<gpu, mshadow_op::rmod_grad>);

} // namespace op
} // namespace mxnet
142 changes: 142 additions & 0 deletions src/operator/numpy/np_elemwise_broadcast_op_extended_sec.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_elemwise_broadcast_op_extended_sec.cc
* \brief CPU Implementation of extended functions for elementwise numpy binary broadcast operator. (Second extended file)
*/

#include "../../common/utils.h"
#include "./np_elemwise_broadcast_op.h"

namespace mxnet {
namespace op {

#define MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(name) \
NNVM_REGISTER_OP(name) \
.set_num_inputs(1) \
.set_num_outputs(1) \
.set_attr_parser([](NodeAttrs* attrs) { \
attrs->parsed = std::stod(attrs->dict["scalar"]); \
}) \
.set_attr<mxnet::FInferShape>("FInferShape", ElemwiseShape<1, 1>) \
.set_attr<nnvm::FInferType>("FInferType", NumpyBinaryScalarType) \
.set_attr<nnvm::FInplaceOption>("FInplaceOption", \
[](const NodeAttrs& attrs){ \
return std::vector<std::pair<int, int> >{{0, 0}}; \
}) \
.add_argument("data", "NDArray-or-Symbol", "source input") \
.add_argument("scalar", "float", "scalar input")

MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(_npi_fmax)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::fmax>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmax"});

NNVM_REGISTER_OP(_backward_npi_fmax)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::ge,
mshadow_op::lt>);

MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_fmax_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::fmax>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmax_scalar"});

MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_fmax_scalar)
.add_argument("scalar", "float", "scalar value")
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::ge>);

MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(_npi_fmin)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::fmin>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmin"});

NNVM_REGISTER_OP(_backward_npi_fmin)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::le,
mshadow_op::gt>);

MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_fmin_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::fmin>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmin_scalar"});

MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_fmin_scalar)
.add_argument("scalar", "float", "scalar value")
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::le>);

MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(_npi_fmod)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::fmod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmod"});

NNVM_REGISTER_OP(_backward_npi_fmod)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::mod_grad,
mshadow_op::mod_rgrad>);

MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_fmod_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::fmod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmod_scalar"});

MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_fmod_scalar)
.add_argument("scalar", "float", "scalar value")
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::mod_grad>);

MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_rfmod_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::rfmod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_rfmod_scalar"});

MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_rfmod_scalar)
.add_argument("scalar", "float", "scalar value")
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::rmod_grad>);

} // namespace op
} // namespace mxnet
Loading

0 comments on commit de10158

Please sign in to comment.