Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
* Add op fmod (rfmod still need check)
Browse files Browse the repository at this point in the history
  • Loading branch information
hanke580 committed Feb 25, 2020
1 parent ae81564 commit be880b7
Show file tree
Hide file tree
Showing 10 changed files with 139 additions and 3 deletions.
30 changes: 29 additions & 1 deletion python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,8 @@


__all__ = ['shape', 'zeros', 'zeros_like', 'ones', 'ones_like', 'full', 'full_like', 'empty_like', 'invert', 'delete',
'add', 'broadcast_to', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'power', 'bitwise_not',
'add', 'broadcast_to', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'fmod',
'power', 'bitwise_not',
'arctan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs', 'insert', 'fabs',
'absolute', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'matmul',
'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'fix', 'ceil', 'floor', 'histogram',
Expand Down Expand Up @@ -1157,6 +1158,33 @@ def mod(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.mod, _np.mod, _npi.mod_scalar, _npi.rmod_scalar, out)


@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def fmod(x1, x2, out=None, **kwargs):
"""
Return element-wise remainder of division.
Parameters
----------
x1 : ndarray or scalar
Dividend array.
x2 : ndarray or scalar
Divisor array.
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
"""
return _ufunc_helper(x1, x2, _npi.fmod, _np.fmod, _npi.fmod_scalar, out)


@set_module('mxnet.ndarray.numpy')
def delete(arr, obj, axis=None):
"""
Expand Down
35 changes: 34 additions & 1 deletion python/mxnet/numpy/multiarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,8 @@

__all__ = ['ndarray', 'empty', 'empty_like', 'array', 'shape',
'zeros', 'zeros_like', 'ones', 'ones_like', 'full', 'full_like', 'broadcast_to',
'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'power', 'bitwise_not', 'delete',
'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'fmod',
'power', 'bitwise_not', 'delete',
'arctan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'invert',
'sqrt', 'cbrt', 'abs', 'absolute', 'fabs', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log',
'degrees', 'log2', 'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'histogram',
Expand Down Expand Up @@ -3014,6 +3015,38 @@ def mod(x1, x2, out=None, **kwargs):
return _mx_nd_np.mod(x1, x2, out=out)


@set_module('mxnet.numpy')
@wrap_np_binary_func
def fmod(x1, x2, out=None, **kwargs):
"""
Return element-wise remainder of division.
Parameters
----------
x1 : ndarray or scalar
Dividend array.
x2 : ndarray or scalar
Divisor array.
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
Examples
--------
>>> np.fmod(np.arange(7), 5)
array([0., 1., 2., 3., 4., 0., 1.])
"""
return _mx_nd_np.fmod(x1, x2, out=out)


@set_module('mxnet.numpy')
@wrap_np_binary_func
def matmul(a, b, out=None, **kwargs):
Expand Down
1 change: 1 addition & 0 deletions python/mxnet/numpy_dispatch_protocol.py
Original file line number Diff line number Diff line change
Expand Up @@ -246,6 +246,7 @@ def _register_array_function():
'negative',
'power',
'mod',
'fmod',
'matmul',
'absolute',
'rint',
Expand Down
9 changes: 8 additions & 1 deletion python/mxnet/symbol/numpy/_symbol.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,8 @@
from builtins import slice as py_slice

__all__ = ['zeros', 'zeros_like', 'ones', 'ones_like', 'full', 'full_like', 'empty_like', 'bitwise_not', 'invert',
'delete', 'add', 'broadcast_to', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'power', 'arctan2',
'delete', 'add', 'broadcast_to', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'fmod',
'power', 'arctan2',
'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs', 'absolute', 'fabs', 'exp',
'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'log1p', 'matmul',
'rint', 'radians', 'reciprocal', 'square', 'negative', 'fix', 'ceil', 'floor', 'histogram', 'insert',
Expand Down Expand Up @@ -1576,6 +1577,12 @@ def mod(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.mod, _np.mod, _npi.mod_scalar, _npi.rmod_scalar, out)


@set_module('mxnet.symbol.numpy')
@wrap_np_binary_func
def fmod(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.fmod, _np.fmod, _npi.fmod_scalar, out)


@set_module('mxnet.symbol.numpy')
@wrap_np_binary_func
def remainder(x1, x2, out=None, **kwargs):
Expand Down
11 changes: 11 additions & 0 deletions src/operator/mshadow_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -795,6 +795,17 @@ struct mod : public mxnet_op::tunable {
}
};

struct fmod : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a, DType b) {
if (b == DType(0)) {
return DType(0);
} else {
return DType(::fmod(static_cast<double>(a), static_cast<double>(b)));
}
}
};

template<>
MSHADOW_XINLINE mshadow::half::half2_t mod::Map<mshadow::half::half2_t>
(mshadow::half::half2_t a,
Expand Down
28 changes: 28 additions & 0 deletions src/operator/numpy/np_elemwise_broadcast_op_extended.cc
Original file line number Diff line number Diff line change
Expand Up @@ -427,5 +427,33 @@ MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_fmin_scalar)
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::le>);

MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(_npi_fmod)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::fmod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmod"});

NNVM_REGISTER_OP(_backward_npi_fmod)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::mod_grad,
mshadow_op::mod_rgrad>);

MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_fmod_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::fmod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_fmod_scalar"});

MXNET_OPERATOR_REGISTER_BINARY(_backward_npi_fmod_scalar)
.add_argument("scalar", "float", "scalar value")
.set_attr_parser([](NodeAttrs *attrs) { attrs->parsed = std::stod(attrs->dict["scalar"]); })
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Backward<cpu, mshadow_op::mod_grad>);

} // namespace op
} // namespace mxnet
13 changes: 13 additions & 0 deletions src/operator/numpy/np_elemwise_broadcast_op_extended.cu
Original file line number Diff line number Diff line change
Expand Up @@ -142,5 +142,18 @@ NNVM_REGISTER_OP(_npi_fmin_scalar)
NNVM_REGISTER_OP(_backward_npi_fmin_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Backward<gpu, mshadow_op::le>);

NNVM_REGISTER_OP(_npi_fmod)
.set_attr<FCompute>("FCompute<gpu>", BinaryBroadcastCompute<gpu, mshadow_op::fmod>);

NNVM_REGISTER_OP(_backward_npi_fmod)
.set_attr<FCompute>("FCompute<gpu>", BinaryBroadcastBackwardUseIn<gpu, mshadow_op::mod_grad,
mshadow_op::mod_rgrad>);

NNVM_REGISTER_OP(_npi_fmod_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Compute<gpu, mshadow_op::fmod>);

NNVM_REGISTER_OP(_backward_npi_fmod_scalar)
.set_attr<FCompute>("FCompute<gpu>", BinaryScalarOp::Backward<gpu, mshadow_op::mod_grad>);

} // namespace op
} // namespace mxnet
1 change: 1 addition & 0 deletions src/operator/operator_tune.cc
Original file line number Diff line number Diff line change
Expand Up @@ -345,6 +345,7 @@ IMPLEMENT_BINARY_WORKLOAD_FWD(mxnet::op::mshadow_op::div_rgrad); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_BWD(mxnet::op::mshadow_op::div_rgrad); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_BWD(mxnet::op::mshadow_op::rdiv_grad); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_FWD(mxnet::op::mshadow_op::mod); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_FWD(mxnet::op::mshadow_op::fmod); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_BWD(mxnet::op::mshadow_op::mod_grad); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_BWD(mxnet::op::mshadow_op::mod_rgrad); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_FWD(mxnet::op::mshadow_op::rmod); // NOLINT()
Expand Down
8 changes: 8 additions & 0 deletions tests/python/unittest/test_numpy_interoperability.py
Original file line number Diff line number Diff line change
Expand Up @@ -1415,6 +1415,13 @@ def _add_workload_mod(array_pool):
OpArgMngr.add_workload('mod', array_pool['4x1'], array_pool['1x1x0'])


def _add_workload_fmod(array_pool):
OpArgMngr.add_workload('fmod', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('fmod', array_pool['4x1'], 2)
OpArgMngr.add_workload('fmod', 2, array_pool['4x1'])
OpArgMngr.add_workload('fmod', array_pool['4x1'], array_pool['1x1x0'])


def _add_workload_remainder():
# test remainder basic
OpArgMngr.add_workload('remainder', np.array([0, 1, 2, 4, 2], dtype=np.float16),
Expand Down Expand Up @@ -2832,6 +2839,7 @@ def _prepare_workloads():
_add_workload_multiply(array_pool)
_add_workload_power(array_pool)
_add_workload_mod(array_pool)
_add_workload_fmod(array_pool)
_add_workload_remainder()
_add_workload_maximum(array_pool)
_add_workload_fmax(array_pool)
Expand Down
6 changes: 6 additions & 0 deletions tests/python/unittest/test_numpy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -2254,6 +2254,12 @@ def hybrid_forward(self, F, a, b, *args, **kwargs):
[lambda y, x1, x2: -_np.floor(x1 / x2),
lambda y, x1, x2: _np.zeros(y.shape)],
[[_np.float16, _np.float32, _np.float64], [_np.int32]]),
'fmod': (1.0, 10.0,
[lambda y, x1, x2: _np.ones(y.shape),
lambda y, x1, x2: _np.zeros(y.shape)],
[lambda y, x1, x2: -_np.floor(x1 / x2),
lambda y, x1, x2: _np.zeros(y.shape)],
[[_np.float16, _np.float32, _np.float64], [_np.int32]]),
'remainder': (1.0, 10.0,
[lambda y, x1, x2: _np.ones(y.shape),
lambda y, x1, x2: _np.zeros(y.shape)],
Expand Down

0 comments on commit be880b7

Please sign in to comment.