Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
Add np.random.pareto and np.random.power; add one test for pareto, po…
Browse files Browse the repository at this point in the history
…wer, weibull
  • Loading branch information
D-Roberts committed Feb 5, 2020
1 parent 513c365 commit a3f4ffa
Show file tree
Hide file tree
Showing 10 changed files with 821 additions and 3 deletions.
88 changes: 87 additions & 1 deletion python/mxnet/ndarray/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@


__all__ = ['randint', 'uniform', 'normal', "choice", "rand", "multinomial", "multivariate_normal",
"shuffle", 'gamma', 'beta', 'exponential', 'lognormal', 'weibull']
"shuffle", 'gamma', 'beta', 'exponential', 'lognormal', 'weibull', 'pareto', 'power']


def randint(low, high=None, size=None, dtype=None, ctx=None, out=None):
Expand Down Expand Up @@ -515,6 +515,92 @@ def weibull(a, size):
return _npi.weibull(a=a, size=size)


def pareto(a, size):
r"""Draw samples from a Pareto II or Lomax distribution with specified shape a.
Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the Pareto distribution.
Examples
--------
>>> np.random.pareto(a=5)
array(0.12749612)
>>> mx.numpy.random.pareto(a=5, size=[2,3])
array([[0.06933999, 0.0344373 , 0.10654891],
[0.0311172 , 0.12911797, 0.03370714]])
>>> np.random.pareto(a=np.array([2,3])
array([0.26636696, 0.15685666])
The probability density for the Pareto distribution is f(x) = \frac{am^a}{x^{a+1}}
where a is the shape and m the scale. Here m is assumed 1. The Pareto distribution
is a power law distribution. Pareto created it to describe the wealth in the economy.
"""
from ...numpy import ndarray as np_ndarray
tensor_type_name = np_ndarray
if size == ():
size = None
is_tensor = isinstance(a, tensor_type_name)
if is_tensor:
return _npi.pareto(a, a=None, size=size)
else:
return _npi.pareto(a=a, size=size)


def power(a, size):
r"""Draw samples in [0, 1] from a power distribution with given parameter a.
Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the power distribution.
Examples
--------
>>> np.random.power(a=5)
array(0.8602478)
>>> np.random.power(a=5, size=[2,3])
array([[0.988391 , 0.5153122 , 0.9383134 ],
[0.9078098 , 0.87819266, 0.730635]])
>>> np.random.power(a=np.array([2,3])
array([0.7499419 , 0.88894516])
The probability density function is f(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.
The power distribution is just the inverse of the Pareto distribution and
a special case of the Beta distribution.
"""
from ...numpy import ndarray as np_ndarray
tensor_type_name = np_ndarray
if size == ():
size = None
is_tensor = isinstance(a, tensor_type_name)
if is_tensor:
return _npi.powerd(a, a=None, size=size)
else:
return _npi.powerd(a=a, size=size)


def gamma(shape, scale=1.0, size=None, dtype=None, ctx=None, out=None):
"""Draw samples from a Gamma distribution.
Expand Down
72 changes: 71 additions & 1 deletion python/mxnet/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@


__all__ = ["randint", "uniform", "normal", "choice", "rand", "multinomial", "multivariate_normal",
"shuffle", "randn", "gamma", 'beta', "exponential", "lognormal", "weibull"]
"shuffle", "randn", "gamma", 'beta', "exponential", "lognormal", "weibull", "pareto", "power"]


def randint(low, high=None, size=None, dtype=None, ctx=None, out=None):
Expand Down Expand Up @@ -529,6 +529,76 @@ def weibull(a, size=None):
return _mx_nd_np.random.weibull(a, size)


def pareto(a, size=None):
r"""Draw samples from a Pareto II or Lomax distribution with specified shape a.
Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the Pareto distribution.
Examples
--------
>>> np.random.pareto(a=5)
array(0.12749612)
>>> mx.numpy.random.pareto(a=5, size=[2,3])
array([[0.06933999, 0.0344373 , 0.10654891],
[0.0311172 , 0.12911797, 0.03370714]])
>>> np.random.pareto(a=np.array([2,3])
array([0.26636696, 0.15685666])
The probability density for the Pareto distribution is f(x) = \frac{am^a}{x^{a+1}}
where a is the shape and m the scale. Here m is assumed 1. The Pareto distribution
is a power law distribution. Pareto created it to describe the wealth in the economy.
"""
return _mx_nd_np.random.pareto(a, size)


def power(a, size=None):
r"""Draw samples in [0, 1] from a power distribution with given parameter a.
Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the power distribution.
Examples
--------
>>> np.random.power(a=5)
array(0.8602478)
>>> np.random.power(a=5, size=[2,3])
array([[0.988391 , 0.5153122 , 0.9383134 ],
[0.9078098 , 0.87819266, 0.730635]])
>>> np.random.power(a=np.array([2,3])
array([0.7499419 , 0.88894516])
The probability density function is f(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.
The power distribution is just the inverse of the Pareto distribution and
a special case of the Beta distribution.
"""
return _mx_nd_np.random.power(a, size)


def shuffle(x):
"""
Modify a sequence in-place by shuffling its contents.
Expand Down
88 changes: 87 additions & 1 deletion python/mxnet/symbol/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@


__all__ = ['randint', 'uniform', 'normal', 'multivariate_normal',
'rand', 'shuffle', 'gamma', 'beta', 'exponential', 'lognormal', 'weibull']
'rand', 'shuffle', 'gamma', 'beta', 'exponential', 'lognormal', 'weibull', 'pareto', 'power']


def randint(low, high=None, size=None, dtype=None, ctx=None, out=None):
Expand Down Expand Up @@ -524,6 +524,92 @@ def weibull(a, size):
return _npi.weibull(a=a, size=size)


def pareto(a, size):
r"""Draw samples from a Pareto II or Lomax distribution with specified shape a.
Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.
Returns
-------
out : _Symbol
Drawn samples from the Pareto distribution.
Examples
--------
>>> np.random.pareto(a=5)
array(0.12749612)
>>> mx.numpy.random.pareto(a=5, size=[2,3])
array([[0.06933999, 0.0344373 , 0.10654891],
[0.0311172 , 0.12911797, 0.03370714]])
>>> np.random.pareto(a=np.array([2,3])
array([0.26636696, 0.15685666])
The probability density for the Pareto distribution is f(x) = \frac{am^a}{x^{a+1}}
where a is the shape and m the scale. Here m is assumed 1. The Pareto distribution
is a power law distribution. Pareto created it to describe the wealth in the economy.
"""
from ..numpy import _Symbol as np_symbol
tensor_type_name = np_symbol
if size == ():
size = None
is_tensor = isinstance(a, tensor_type_name)
if is_tensor:
return _npi.pareto(a, a=None, size=size)
else:
return _npi.pareto(a=a, size=size)


def power(a, size):
r"""Draw samples in [0, 1] from a power distribution with given parameter a.
Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.
Returns
-------
out : _Symbol
Drawn samples from the power distribution.
Examples
--------
>>> np.random.power(a=5)
array(0.8602478)
>>> np.random.power(a=5, size=[2,3])
array([[0.988391 , 0.5153122 , 0.9383134 ],
[0.9078098 , 0.87819266, 0.730635]])
>>> np.random.power(a=np.array([2,3])
array([0.7499419 , 0.88894516])
The probability density function is f(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.
The power distribution is just the inverse of the Pareto distribution and
a special case of the Beta distribution.
"""
from ..numpy import _Symbol as np_symbol
tensor_type_name = np_symbol
if size == ():
size = None
is_tensor = isinstance(a, tensor_type_name)
if is_tensor:
return _npi.powerd(a, a=None, size=size)
else:
return _npi.powerd(a=a, size=size)


def multivariate_normal(mean, cov, size=None, check_valid=None, tol=None):
"""
multivariate_normal(mean, cov, size=None, check_valid=None, tol=None)
Expand Down
72 changes: 72 additions & 0 deletions src/operator/numpy/random/np_pareto_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_pareto_op.cc
* \brief Operator for numpy sampling from Pareto distributions
*/

#include "./np_pareto_op.h"
#include "./dist_common.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(NumpyParetoParam);

NNVM_REGISTER_OP(_npi_pareto)
.set_num_inputs(
[](const nnvm::NodeAttrs& attrs) {
const NumpyParetoParam& param = nnvm::get<NumpyParetoParam>(attrs.parsed);
int num_inputs = 1;
if (param.a.has_value()) {
num_inputs -= 1;
}
return num_inputs;
})
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
const NumpyParetoParam& param = nnvm::get<NumpyParetoParam>(attrs.parsed);
int num_inputs = 1;
if (param.a.has_value()) {
num_inputs -= 1;
}
return (num_inputs == 0) ? std::vector<std::string>() : std::vector<std::string>{"input1"};
})
.set_attr_parser(ParamParser<NumpyParetoParam>)
.set_attr<mxnet::FInferShape>("FInferShape", UnaryDistOpShape<NumpyParetoParam>)
.set_attr<nnvm::FInferType>("FInferType",
[](const nnvm::NodeAttrs &attrs, std::vector<int> *in_attrs, std::vector<int> *out_attrs) {
(*out_attrs)[0] = mshadow::kFloat32;
return true;
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const nnvm::NodeAttrs& attrs) {
return std::vector<ResourceRequest>{
ResourceRequest::kRandom, ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyParetoForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.add_argument("input1", "NDArray-or-Symbol", "Source input")
.add_arguments(NumpyParetoParam::__FIELDS__());

} // namespace op
} // namespace mxnet
35 changes: 35 additions & 0 deletions src/operator/numpy/random/np_pareto_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_pareto_op.cu
* \brief Operator for numpy sampling from pareto distributions
*/

#include "./np_pareto_op.h"

namespace mxnet {
namespace op {

NNVM_REGISTER_OP(_npi_pareto)
.set_attr<FCompute>("FCompute<gpu>", NumpyParetoForward<gpu>);

} // namespace op
} // namespace mxnet
Loading

0 comments on commit a3f4ffa

Please sign in to comment.