Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
[MXNET-68] Random shuffle implementation (#10048)
Browse files Browse the repository at this point in the history
* Random shuffle implementation

This operator randomly shuffles an NDArray along the first axis. The order of the elements in each subarray does not change. For exmaple, if an NDArray `x` is shuffled, the order of the subarrays `x[i]` randomly changes but the order of the elements in each `x[i]` does not change. It is modeled on `numpy.random.shuffle`.

In cpu, the shuffling of an 1D array is delegated to `__gnu_parallel::random_shuffle`, which utilizes openmp, for clang on linux and gcc on any OS and delegated to `std::shuffle` for other platforms. For an multidimensional array, the usual Fisher-Yates shuffling is implemented.

In gpu, it shuffles the array of indices representing the subarrays and then rearrange the elements of the data array according to the shuffled index array. To shuffle the index array, a random key is generated for each index and then the indices are sorted by the keys. The sorting is delegated to mshadow's `SortByKey` which again delegates the call to thrust's `sort_by_key`.

* Refactoring to avoid a preprocessing problem in Windows build

* Cosmetic changes

* Typo

* Adding const keyword at several places

* Fix the bug that integer arrays are not allowed

* Revise the comments to explain the unit test

* Add a check for correct array shape

* Revised unit test with larger arrays

* Replace the custom hash with 'str'

* Fix a bug due to the integer arithmetic in python2

* Revise comments for the unit test

* Fix the invalid fix in the commit f240714

* Update random.md

* Update random.md
  • Loading branch information
asitstands authored and piiswrong committed Mar 20, 2018
1 parent 484af32 commit 9bbdc16
Show file tree
Hide file tree
Showing 7 changed files with 386 additions and 2 deletions.
2 changes: 2 additions & 0 deletions docs/api/python/ndarray/random.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,8 @@ In the rest of this document, we list routines provided by the `ndarray.random`
normal
poisson
uniform
multinomial
shuffle
mxnet.random.seed
```

Expand Down
2 changes: 2 additions & 0 deletions docs/api/python/symbol/random.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,8 @@ In the rest of this document, we list routines provided by the `symbol.random` p
normal
poisson
uniform
multinomial
shuffle
mxnet.random.seed
```

Expand Down
34 changes: 33 additions & 1 deletion python/mxnet/ndarray/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@


__all__ = ['uniform', 'normal', 'poisson', 'exponential', 'gamma', 'multinomial',
'negative_binomial', 'generalized_negative_binomial']
'negative_binomial', 'generalized_negative_binomial', 'shuffle']


def _random_helper(random, sampler, params, shape, dtype, ctx, out, kwargs):
Expand Down Expand Up @@ -431,3 +431,35 @@ def multinomial(data, shape=_Null, get_prob=False, out=None, **kwargs):
<NDArray 2 @cpu(0)>
"""
return _internal._sample_multinomial(data, shape, get_prob, out=out, **kwargs)


def shuffle(data, **kwargs):
"""Shuffle the elements randomly.
This shuffles the array along the first axis.
The order of the elements in each subarray does not change.
For example, if a 2D array is given, the order of the rows randomly changes,
but the order of the elements in each row does not change.
Parameters
----------
data : NDArray
Input data array.
out : NDArray
Array to store the result.
Examples
--------
>>> data = mx.nd.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
>>> mx.nd.random.shuffle(data)
[[ 0. 1. 2.]
[ 6. 7. 8.]
[ 3. 4. 5.]]
<NDArray 2x3 @cpu(0)>
>>> mx.nd.random.shuffle(data)
[[ 3. 4. 5.]
[ 0. 1. 2.]
[ 6. 7. 8.]]
<NDArray 2x3 @cpu(0)>
"""
return _internal._shuffle(data, **kwargs)
33 changes: 32 additions & 1 deletion python/mxnet/symbol/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@


__all__ = ['uniform', 'normal', 'poisson', 'exponential', 'gamma', 'multinomial',
'negative_binomial', 'generalized_negative_binomial']
'negative_binomial', 'generalized_negative_binomial', 'shuffle']


def _random_helper(random, sampler, params, shape, dtype, kwargs):
Expand Down Expand Up @@ -247,3 +247,34 @@ def multinomial(data, shape=_Null, get_prob=True, **kwargs):
reward as head gradient w.r.t. this array to estimate gradient.
"""
return _internal._sample_multinomial(data, shape, get_prob, **kwargs)


def shuffle(data, **kwargs):
"""Shuffle the elements randomly.
This shuffles the array along the first axis.
The order of the elements in each subarray does not change.
For example, if a 2D array is given, the order of the rows randomly changes,
but the order of the elements in each row does not change.
Parameters
----------
data : NDArray
Input data array.
Examples
--------
>>> data = mx.nd.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
>>> a = mx.sym.Variable('a')
>>> b = mx.sym.random.shuffle(a)
>>> b.eval(a=data)
[[ 0. 1. 2.]
[ 6. 7. 8.]
[ 3. 4. 5.]]
<NDArray 2x3 @cpu(0)>
>>> b.eval(a=data)
[[ 3. 4. 5.]
[ 0. 1. 2.]
[ 6. 7. 8.]]
<NDArray 2x3 @cpu(0)>
"""
return _internal._shuffle(data, **kwargs)
134 changes: 134 additions & 0 deletions src/operator/random/shuffle_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2018 by Contributors
* \file shuffle_op.cc
* \brief Operator to shuffle elements of an NDArray
*/
#if (__GNUC__ > 4 && !defined(__clang__major__)) || (__clang_major__ > 4 && __linux__)
#define USE_GNU_PARALLEL_SHUFFLE
#endif

#include <mxnet/operator_util.h>
#include <algorithm>
#include <random>
#include <vector>
#ifdef USE_GNU_PARALLEL_SHUFFLE
#include <parallel/algorithm>
#endif
#include "../elemwise_op_common.h"

namespace mxnet {
namespace op {

namespace {

template<typename DType, typename Rand>
void Shuffle1D(DType* const out, const index_t size, Rand* const prnd) {
#ifdef USE_GNU_PARALLEL_SHUFFLE
auto rand_n = [prnd](index_t n) {
std::uniform_int_distribution<index_t> dist(0, n - 1);
return dist(*prnd);
};
__gnu_parallel::random_shuffle(out, out + size, rand_n);
#else
std::shuffle(out, out + size, *prnd);
#endif
}

template<typename DType, typename Rand>
void ShuffleND(DType* const out, const index_t size, const index_t first_axis_len,
Rand* const prnd) {
// Fisher-Yates shuffling
const index_t stride = size / first_axis_len;
auto rand_n = [prnd](index_t n) {
std::uniform_int_distribution<index_t> dist(0, n - 1);
return dist(*prnd);
};
CHECK_GT(first_axis_len, 0U);
for (index_t i = first_axis_len - 1; i > 0; --i) {
const index_t j = rand_n(i + 1);
if (i != j) {
std::swap_ranges(out + stride * i, out + stride * (i + 1), out + stride * j);
}
}
}

} // namespace

void ShuffleForwardCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mxnet_op;
if (req[0] == kNullOp) {
return;
}
CHECK_NE(req[0], kAddTo) << "Shuffle does not support AddTo";
const TShape& input_shape = inputs[0].shape_;
const index_t size = inputs[0].Size();
const index_t first_axis_len = input_shape[0];
Stream<cpu> *s = ctx.get_stream<cpu>();
MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, DType, {
Tensor<cpu, 1, DType> in = inputs[0].get_with_shape<cpu, 1, DType>(Shape1(size), s);
Tensor<cpu, 1, DType> out = outputs[0].get_with_shape<cpu, 1, DType>(Shape1(size), s);
auto& prnd = ctx.requested[0].get_random<cpu, index_t>(ctx.get_stream<cpu>())->GetRndEngine();
if (req[0] != kWriteInplace) {
std::copy(in.dptr_, in.dptr_ + size, out.dptr_);
}
if (input_shape.ndim() == 1) {
Shuffle1D(out.dptr_, size, &prnd);
} else {
ShuffleND(out.dptr_, size, first_axis_len, &prnd);
}
});
}


// No parameter is declared.
// No backward computation is registered. Shuffling is not differentiable.

NNVM_REGISTER_OP(_shuffle)
.add_alias("shuffle")
.describe(R"code(Randomly shuffle the elements.
This shuffles the array along the first axis.
The order of the elements in each subarray does not change.
For example, if a 2D array is given, the order of the rows randomly changes,
but the order of the elements in each row does not change.
)code")
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FInferShape>("FInferShape", ElemwiseShape<1, 1>)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<FResourceRequest>("FResourceRequest",
[](const nnvm::NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kRandom, ResourceRequest::kTempSpace};
})
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int>>{{0, 0}};
})
.set_attr<FCompute>("FCompute<cpu>", ShuffleForwardCPU)
.add_argument("data", "NDArray-or-Symbol", "Data to be shuffled.");

} // namespace op
} // namespace mxnet
106 changes: 106 additions & 0 deletions src/operator/random/shuffle_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2018 by Contributors
* \file shuffle_op.cc
* \brief Operator to shuffle elements of an NDArray
*/
#include <mxnet/operator_util.h>
#include <algorithm>
#include <random>
#include <vector>
#include "../elemwise_op_common.h"
#include "../tensor/init_op.h"

namespace mxnet {
namespace op {

namespace {

struct CopyForShuffle {
template<typename DType>
MSHADOW_XINLINE static void Map(int i, const DType* const in, DType* out,
const index_t* indices, const index_t stride) {
out[i] = in[indices[i / stride] * stride + i % stride];
}
};

} // namespace

void ShuffleForwardGPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mxnet_op;
if (req[0] == kNullOp) {
return;
}
CHECK_NE(req[0], kAddTo) << "Shuffle does not support AddTo";
const TShape& input_shape = inputs[0].shape_;
const index_t size = inputs[0].Size();
const index_t first_axis_len = input_shape[0];
const index_t stride = size / first_axis_len;
Stream<gpu> *s = ctx.get_stream<gpu>();
MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, DType, {
using KeyType = index_t;
Tensor<gpu, 1, DType> in = inputs[0].get_with_shape<gpu, 1, DType>(Shape1(size), s);
Tensor<gpu, 1, DType> out = outputs[0].get_with_shape<gpu, 1, DType>(Shape1(size), s);
Random<gpu, KeyType> *prnd = ctx.requested[0].get_random<gpu, KeyType>(s);
if (input_shape.ndim() == 1) {
if (req[0] != kWriteInplace) {
Copy(out, in, s);
}
Tensor<gpu, 1, KeyType> keys =
ctx.requested[1].get_space_typed<gpu, 1, KeyType>(Shape1(size), s);
prnd->GetRandInt(keys);
SortByKey(keys, out, true);
} else {
const size_t tmp_space_size = req[0] == kWriteInplace ?
2 * first_axis_len * sizeof(index_t) + size * sizeof(DType) :
2 * first_axis_len * sizeof(index_t);
Tensor<gpu, 1, char> tmp_space =
ctx.requested[1].get_space_typed<gpu, 1, char>(Shape1(tmp_space_size), s);
char* tmp_space_ptr = tmp_space.dptr_;
Tensor<gpu, 1, index_t> indices(reinterpret_cast<index_t*>(tmp_space_ptr),
Shape1(first_axis_len), s);
tmp_space_ptr += sizeof(index_t) * first_axis_len;
Kernel<range_fwd, gpu>::Launch(s, first_axis_len, 1, 0U, 1U, kWriteTo, indices.dptr_);
Tensor<gpu, 1, KeyType> keys(reinterpret_cast<KeyType*>(tmp_space_ptr),
Shape1(first_axis_len), s);
tmp_space_ptr += sizeof(KeyType) * first_axis_len;
prnd->GetRandInt(keys);
SortByKey(keys, indices, true);
if (req[0] == kWriteInplace) {
Tensor<gpu, 1, DType> buf(reinterpret_cast<DType*>(tmp_space_ptr), Shape1(size), s);
Copy(buf, in, s);
Kernel<CopyForShuffle, gpu>::Launch(s, size, buf.dptr_, out.dptr_, indices.dptr_, stride);
} else {
Kernel<CopyForShuffle, gpu>::Launch(s, size, in.dptr_, out.dptr_, indices.dptr_, stride);
}
}
});
}

NNVM_REGISTER_OP(_shuffle)
.set_attr<FCompute>("FCompute<gpu>", ShuffleForwardGPU);

} // namespace op
} // namespace mxnet
Loading

0 comments on commit 9bbdc16

Please sign in to comment.