Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
fix ssd quantization script error (#13843) (#13882)
Browse files Browse the repository at this point in the history
* fix ssd quantization script error

* update readme for ssd

* move quantized SSD instructions from quantization/README.md to ssd/README.md

* update ssd readme and accuracy

* update readme for SSD-vGG16
  • Loading branch information
TaoLv authored Jan 16, 2019
1 parent 208beaa commit 594089b
Show file tree
Hide file tree
Showing 3 changed files with 48 additions and 41 deletions.
41 changes: 4 additions & 37 deletions example/quantization/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ The following models have been tested on Linux systems.
|[Inception V3](#7)|[Gluon-CV](https://gluon-cv.mxnet.io/model_zoo/classification.html)|[Validation Dataset](http://data.mxnet.io/data/val_256_q90.rec)|76.49%/93.10% |76.38%/93% |
|[ResNet152-V2](#8)|[MXNet ModelZoo](http://data.mxnet.io/models/imagenet/resnet/152-layers/)|[Validation Dataset](http://data.mxnet.io/data/val_256_q90.rec)|76.76%/93.03%|76.48%/92.96%|
|[Inception-BN](#9)|[MXNet ModelZoo](http://data.mxnet.io/models/imagenet/inception-bn/)|[Validation Dataset](http://data.mxnet.io/data/val_256_q90.rec)|72.09%/90.60%|72.00%/90.53%|
| [SSD-VGG](#10) | [example/ssd](https://github.com/apache/incubator-mxnet/tree/master/example/ssd) | VOC2007/2012 | 0.83 mAP | 0.82 mAP |
| [SSD-VGG16](#10) | [example/ssd](https://github.com/apache/incubator-mxnet/tree/master/example/ssd) | VOC2007/2012 | 0.8366 mAP | 0.8364 mAP |

<h3 id='3'>ResNet50-V1</h3>

Expand Down Expand Up @@ -208,42 +208,9 @@ python imagenet_inference.py --symbol-file=./model/imagenet1k-inception-bn-symbo
python imagenet_inference.py --symbol-file=./model/imagenet1k-inception-bn-quantized-5batches-naive-symbol.json --batch-size=64 --num-inference-batches=500 --ctx=cpu --benchmark=True
```

<h3 id='10'>SSD-VGG</h3>
<h3 id='10'>SSD-VGG16</h3>

Follow the [SSD example's instructions](https://github.com/apache/incubator-mxnet/tree/master/example/ssd#train-the-model) in [example/ssd](https://github.com/apache/incubator-mxnet/tree/master/example/ssd) to train a FP32 `SSD-VGG16_reduced_300x300` model based on Pascal VOC dataset. You can also download our [SSD-VGG16 pre-trained model](http://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/models/ssd_vgg16_reduced_300-dd479559.zip) and [packed binary data](http://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/ssd-val-fc19a535.zip). Extract the zip files, then rename the directories to `model` and `data` respectively. Then, rename the files in directories as follows.

```
data/
|---val.rec
|---val.lxt
|---val.idx
model/
|---ssd_vgg16_reduced_300.params
|---ssd_vgg16_reduced_300-symbol.json
```

Then, use the following command for quantization. By default, this script uses 5 batches (32 samples per batch) for naive calibration:

```
python quantization.py
```

After quantization, INT8 models will be saved in `model/` dictionary. Use the following command to launch inference.

```
# USE MKLDNN AS SUBGRAPH BACKEND
export MXNET_SUBGRAPH_BACKEND=MKLDNN
# Launch FP32 Inference
python evaluate.py --cpu --num-batch 10 --batch-size 224 --deploy --prefix=./model/ssd_
# Launch INT8 Inference
python evaluate.py --cpu --num-batch 10 --batch-size 224 --deploy --prefix=./model/cqssd_
# Launch dummy data Inference
python benchmark_score.py --deploy --prefix=./model/ssd_
python benchmark_score.py --deploy --prefix=./model/cqssd_
```
SSD model is located in [example/ssd](https://github.com/apache/incubator-mxnet/tree/master/example/ssd), follow [the insturctions](https://github.com/apache/incubator-mxnet/tree/master/example/ssd#quantize-model) to run quantized SSD model.

<h3 id='11'>Custom Model</h3>

Expand Down Expand Up @@ -322,4 +289,4 @@ by invoking `launch_quantize.sh`.

**NOTE**:
- This example has only been tested on Linux systems.
- Performance is expected to decrease with GPU, however the memory footprint of a quantized model is smaller. The purpose of the quantization implementation is to minimize accuracy loss when converting FP32 models to INT8. MXNet community is working on improving the performance.
- Performance is expected to decrease with GPU, however the memory footprint of a quantized model is smaller. The purpose of the quantization implementation is to minimize accuracy loss when converting FP32 models to INT8. MXNet community is working on improving the performance.
38 changes: 38 additions & 0 deletions example/ssd/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ remarkable traits of MXNet.
Due to the permission issue, this example is maintained in this [repository](https://github.com/zhreshold/mxnet-ssd) separately. You can use the link regarding specific per example [issues](https://github.com/zhreshold/mxnet-ssd/issues).

### What's new
* Support uint8 inference on CPU with MKL-DNN backend. Uint8 inference achieves 0.8364 mAP, which is a comparable accuracy to FP32 (0.8366 mAP).
* Added live camera capture and detection display (run with --camera flag). Example:
`./demo.py --camera --cpu --frame-resize 0.5`
* Added multiple trained models.
Expand Down Expand Up @@ -154,6 +155,43 @@ Make sure you have val.rec as validation dataset. It's the same one as used in t
# cd /path/to/incubator-mxnet/example/ssd
python evaluate.py --gpus 0,1 --batch-size 128 --epoch 0
```

### Quantize model

Follow the [Train instructions](https://github.com/apache/incubator-mxnet/tree/master/example/ssd#train-the-model) to train a FP32 `SSD-VGG16_reduced_300x300` model based on Pascal VOC dataset. You can also download our [SSD-VGG16 pre-trained model](http://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/models/ssd_vgg16_reduced_300-dd479559.zip) and [packed binary data](http://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/ssd-val-fc19a535.zip). Create `model` and `data` directories if they're not exist, extract the zip files, then rename the uncompressed files as follows (eg, rename `ssd-val-fc19a535.idx` to `val.idx`, `ssd-val-fc19a535.lst` to `val.lst`, `ssd-val-fc19a535.rec` to `val.rec`, `ssd_vgg16_reduced_300-dd479559.params` to `ssd_vgg16_reduced_300-0000.params`, `ssd_vgg16_reduced_300-symbol-dd479559.json` to `ssd_vgg16_reduced_300-symbol.json`.)

```
data/
|---val.rec
|---val.lxt
|---val.idx
model/
|---ssd_vgg16_reduced_300-0000.params
|---ssd_vgg16_reduced_300-symbol.json
```

Then, use the following command for quantization. By default, this script uses 5 batches (32 samples per batch) for naive calibration:

```
python quantization.py
```

After quantization, INT8 models will be saved in `model/` dictionary. Use the following command to launch inference.

```
# USE MKLDNN AS SUBGRAPH BACKEND
export MXNET_SUBGRAPH_BACKEND=MKLDNN
# Launch FP32 Inference
python evaluate.py --cpu --num-batch 10 --batch-size 224 --deploy --prefix=./model/ssd_
# Launch INT8 Inference
python evaluate.py --cpu --num-batch 10 --batch-size 224 --deploy --prefix=./model/cqssd_
# Launch dummy data Inference
python benchmark_score.py --deploy --prefix=./model/ssd_
python benchmark_score.py --deploy --prefix=./model/cqssd_
```
### Convert model to deploy mode
This simply removes all loss layers, and attach a layer for merging results and non-maximum suppression.
Useful when loading python symbol is not available.
Expand Down
10 changes: 6 additions & 4 deletions example/ssd/quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,12 +119,14 @@ def save_params(fname, arg_params, aux_params, logger=None):
exclude_first_conv = args.exclude_first_conv
excluded_sym_names = []
rgb_mean = '123,117,104'
calib_layer = lambda name: name.endswith('_output')
for i in range(1,19):
excluded_sym_names += ['flatten'+str(i)]
excluded_sym_names += ['relu4_3_cls_pred_conv',
'relu7_cls_pred_conv',
'relu4_3_loc_pred_conv']
'relu4_3_loc_pred_conv',
'multibox_loc_pred',
'concat0',
'concat1']
if exclude_first_conv:
excluded_sym_names += ['conv1_1']

Expand Down Expand Up @@ -156,9 +158,9 @@ def save_params(fname, arg_params, aux_params, logger=None):
ctx=ctx, excluded_sym_names=excluded_sym_names,
calib_mode=calib_mode, calib_data=eval_iter,
num_calib_examples=num_calib_batches * batch_size,
calib_layer=calib_layer, quantized_dtype=args.quantized_dtype,
calib_layer=None, quantized_dtype=args.quantized_dtype,
label_names=(label_name,),
calib_quantize_op = True,
calib_quantize_op=True,
logger=logger)
sym_name = '%s-symbol.json' % ('./model/cqssd_vgg16_reduced_300')
param_name = '%s-%04d.params' % ('./model/cqssd_vgg16_reduced_300', epoch)
Expand Down

0 comments on commit 594089b

Please sign in to comment.