Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support User Defined Window Functions #6703

Merged
merged 9 commits into from
Jun 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions datafusion-examples/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,7 @@ prost = { version = "0.11", default-features = false }
prost-derive = { version = "0.11", default-features = false }
serde = { version = "1.0.136", features = ["derive"] }
serde_json = "1.0.82"
tempfile = "3"
tokio = { version = "1.0", features = ["macros", "rt", "rt-multi-thread", "sync", "parking_lot"] }
tonic = "0.9"
url = "2.2"
Expand Down
1 change: 1 addition & 0 deletions datafusion-examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ cargo run --example csv_sql
- [`rewrite_expr.rs`](examples/rewrite_expr.rs): Define and invoke a custom Query Optimizer pass
- [`simple_udaf.rs`](examples/simple_udaf.rs): Define and invoke a User Defined Aggregate Function (UDAF)
- [`simple_udf.rs`](examples/simple_udf.rs): Define and invoke a User Defined (scalar) Function (UDF)
- [`simple_udfw.rs`](examples/simple_udwf.rs): Define and invoke a User Defined Window Function (UDWF)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

These examples are 💯


## Distributed

Expand Down
6 changes: 5 additions & 1 deletion datafusion-examples/examples/rewrite_expr.rs
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ use datafusion_common::config::ConfigOptions;
use datafusion_common::tree_node::{Transformed, TreeNode};
use datafusion_common::{DataFusionError, Result, ScalarValue};
use datafusion_expr::{
AggregateUDF, Between, Expr, Filter, LogicalPlan, ScalarUDF, TableSource,
AggregateUDF, Between, Expr, Filter, LogicalPlan, ScalarUDF, TableSource, WindowUDF,
};
use datafusion_optimizer::analyzer::{Analyzer, AnalyzerRule};
use datafusion_optimizer::optimizer::Optimizer;
Expand Down Expand Up @@ -216,6 +216,10 @@ impl ContextProvider for MyContextProvider {
None
}

fn get_window_meta(&self, _name: &str) -> Option<Arc<WindowUDF>> {
None
}

fn options(&self) -> &ConfigOptions {
&self.options
}
Expand Down
211 changes: 211 additions & 0 deletions datafusion-examples/examples/simple_udwf.rs
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The documentation in this example is excellent 👏🏻

Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
// Licensed to the Apache Software Foundation (ASF) under one
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is a user facing example of how to use User Defined Window Functions

// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use std::sync::Arc;

use arrow::{
array::{ArrayRef, AsArray, Float64Array},
datatypes::Float64Type,
};
use arrow_schema::DataType;
use datafusion::datasource::file_format::options::CsvReadOptions;

use datafusion::error::Result;
use datafusion::prelude::*;
use datafusion_common::{DataFusionError, ScalarValue};
use datafusion_expr::{
PartitionEvaluator, Signature, Volatility, WindowFrame, WindowUDF,
};

// create local execution context with `cars.csv` registered as a table named `cars`
async fn create_context() -> Result<SessionContext> {
// declare a new context. In spark API, this corresponds to a new spark SQL session
let ctx = SessionContext::new();

// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
println!("pwd: {}", std::env::current_dir().unwrap().display());
let csv_path = "datafusion/core/tests/data/cars.csv".to_string();
let read_options = CsvReadOptions::default().has_header(true);

ctx.register_csv("cars", &csv_path, read_options).await?;
Ok(ctx)
}

/// In this example we will declare a user defined window function that computes a moving average and then run it using SQL
#[tokio::main]
async fn main() -> Result<()> {
let ctx = create_context().await?;

// register the window function with DataFusion so we can call it
ctx.register_udwf(smooth_it());

// Use SQL to run the new window function
let df = ctx.sql("SELECT * from cars").await?;
// print the results
df.show().await?;

// Use SQL to run the new window function:
//
// `PARTITION BY car`:each distinct value of car (red, and green)
// should be treated as a separate partition (and will result in
// creating a new `PartitionEvaluator`)
//
// `ORDER BY time`: within each partition ('green' or 'red') the
// rows will be be ordered by the value in the `time` column
//
// `evaluate_inside_range` is invoked with a window defined by the
// SQL. In this case:
//
// The first invocation will be passed row 0, the first row in the
// partition.
//
// The second invocation will be passed rows 0 and 1, the first
// two rows in the partition.
//
// etc.
let df = ctx
.sql(
"SELECT \
car, \
speed, \
smooth_it(speed) OVER (PARTITION BY car ORDER BY time),\
time \
from cars \
ORDER BY \
car",
)
.await?;
// print the results
df.show().await?;

// this time, call the new widow function with an explicit
// window so evaluate will be invoked with each window.
//
// `ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING`: each invocation
// sees at most 3 rows: the row before, the current row, and the 1
// row afterward.
let df = ctx.sql(
"SELECT \
car, \
speed, \
smooth_it(speed) OVER (PARTITION BY car ORDER BY time ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING),\
time \
from cars \
ORDER BY \
car",
).await?;
// print the results
df.show().await?;

// Now, run the function using the DataFrame API:
let window_expr = smooth_it().call(
vec![col("speed")], // smooth_it(speed)
vec![col("car")], // PARTITION BY car
vec![col("time").sort(true, true)], // ORDER BY time ASC
WindowFrame::new(false),
);
let df = ctx.table("cars").await?.window(vec![window_expr])?;

// print the results
df.show().await?;

Ok(())
}

fn smooth_it() -> WindowUDF {
WindowUDF {
name: String::from("smooth_it"),
// it will take 1 arguments -- the column to smooth
signature: Signature::exact(vec![DataType::Float64], Volatility::Immutable),
return_type: Arc::new(return_type),
partition_evaluator_factory: Arc::new(make_partition_evaluator),
}
}

/// Compute the return type of the smooth_it window function given
/// arguments of `arg_types`.
fn return_type(arg_types: &[DataType]) -> Result<Arc<DataType>> {
if arg_types.len() != 1 {
return Err(DataFusionError::Plan(format!(
"my_udwf expects 1 argument, got {}: {:?}",
arg_types.len(),
arg_types
)));
}
Ok(Arc::new(arg_types[0].clone()))
}

/// Create a `PartitionEvalutor` to evaluate this function on a new
/// partition.
fn make_partition_evaluator() -> Result<Box<dyn PartitionEvaluator>> {
Ok(Box::new(MyPartitionEvaluator::new()))
}

/// This implements the lowest level evaluation for a window function
///
/// It handles calculating the value of the window function for each
/// distinct values of `PARTITION BY` (each car type in our example)
#[derive(Clone, Debug)]
struct MyPartitionEvaluator {}

impl MyPartitionEvaluator {
fn new() -> Self {
Self {}
}
}

/// Different evaluation methods are called depending on the various
/// settings of WindowUDF. This example uses the simplest and most
/// general, `evaluate`. See `PartitionEvaluator` for the other more
/// advanced uses.
impl PartitionEvaluator for MyPartitionEvaluator {
/// Tell DataFusion the window function varies based on the value
/// of the window frame.
fn uses_window_frame(&self) -> bool {
true
}

/// This function is called once per input row.
///
/// `range`specifies which indexes of `values` should be
/// considered for the calculation.
///
/// Note this is the SLOWEST, but simplest, way to evaluate a
/// window function. It is much faster to implement
/// evaluate_all or evaluate_all_with_rank, if possible
fn evaluate(
&mut self,
values: &[ArrayRef],
range: &std::ops::Range<usize>,
) -> Result<ScalarValue> {
// Again, the input argument is an array of floating
// point numbers to calculate a moving average
let arr: &Float64Array = values[0].as_ref().as_primitive::<Float64Type>();

let range_len = range.end - range.start;

// our smoothing function will average all the values in the
let output = if range_len > 0 {
let sum: f64 = arr.values().iter().skip(range.start).take(range_len).sum();
Some(sum / range_len as f64)
} else {
None
};

Ok(ScalarValue::Float64(output))
}
}
8 changes: 8 additions & 0 deletions datafusion/core/src/dataframe.rs
Original file line number Diff line number Diff line change
Expand Up @@ -218,6 +218,14 @@ impl DataFrame {
Ok(DataFrame::new(self.session_state, plan))
}

/// Apply one or more window functions ([`Expr::WindowFunction`]) to extend the schema
pub fn window(self, window_exprs: Vec<Expr>) -> Result<DataFrame> {
Comment on lines +221 to +222
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I was just looking for a similar API today – great to know it is coming

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@stuartcarnie I wonder if you have any thoughts about the API here for making window functions: #6746 (it is somewhat complex at the moment)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe we can add an example usage to the docstring. such as in the pub fn aggregate. We can do so in following PRs also.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good call -- I tried to make one, and it turns out to be non trivial. I will do it in a follow on PR

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here is what I was thinking: #6746 if you like it I will polish it up

let plan = LogicalPlanBuilder::from(self.plan)
.window(window_exprs)?
.build()?;
Ok(DataFrame::new(self.session_state, plan))
}

/// Limit the number of rows returned from this DataFrame.
///
/// `skip` - Number of rows to skip before fetch any row
Expand Down
43 changes: 42 additions & 1 deletion datafusion/core/src/execution/context.rs
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ use datafusion_common::alias::AliasGenerator;
use datafusion_execution::registry::SerializerRegistry;
use datafusion_expr::{
logical_plan::{DdlStatement, Statement},
DescribeTable, StringifiedPlan, UserDefinedLogicalNode,
DescribeTable, StringifiedPlan, UserDefinedLogicalNode, WindowUDF,
};
pub use datafusion_physical_expr::execution_props::ExecutionProps;
use datafusion_physical_expr::var_provider::is_system_variables;
Expand Down Expand Up @@ -786,6 +786,20 @@ impl SessionContext {
.insert(f.name.clone(), Arc::new(f));
}

/// Registers a window UDF within this context.
///
/// Note in SQL queries, window function names are looked up using
/// lowercase unless the query uses quotes. For example,
///
/// - `SELECT MY_UDWF(x)...` will look for a window function named `"my_udwf"`
/// - `SELECT "my_UDWF"(x)` will look for a window function named `"my_UDWF"`
pub fn register_udwf(&self, f: WindowUDF) {
self.state
.write()
.window_functions
.insert(f.name.clone(), Arc::new(f));
}

/// Creates a [`DataFrame`] for reading a data source.
///
/// For more control such as reading multiple files, you can use
Expand Down Expand Up @@ -1279,6 +1293,10 @@ impl FunctionRegistry for SessionContext {
fn udaf(&self, name: &str) -> Result<Arc<AggregateUDF>> {
self.state.read().udaf(name)
}

fn udwf(&self, name: &str) -> Result<Arc<WindowUDF>> {
self.state.read().udwf(name)
}
}

/// A planner used to add extensions to DataFusion logical and physical plans.
Expand Down Expand Up @@ -1329,6 +1347,8 @@ pub struct SessionState {
scalar_functions: HashMap<String, Arc<ScalarUDF>>,
/// Aggregate functions registered in the context
aggregate_functions: HashMap<String, Arc<AggregateUDF>>,
/// Window functions registered in the context
window_functions: HashMap<String, Arc<WindowUDF>>,
/// Deserializer registry for extensions.
serializer_registry: Arc<dyn SerializerRegistry>,
/// Session configuration
Expand Down Expand Up @@ -1423,6 +1443,7 @@ impl SessionState {
catalog_list,
scalar_functions: HashMap::new(),
aggregate_functions: HashMap::new(),
window_functions: HashMap::new(),
serializer_registry: Arc::new(EmptySerializerRegistry),
config,
execution_props: ExecutionProps::new(),
Expand Down Expand Up @@ -1899,6 +1920,11 @@ impl SessionState {
&self.aggregate_functions
}

/// Return reference to window functions
pub fn window_functions(&self) -> &HashMap<String, Arc<WindowUDF>> {
&self.window_functions
}

/// Return [SerializerRegistry] for extensions
pub fn serializer_registry(&self) -> Arc<dyn SerializerRegistry> {
self.serializer_registry.clone()
Expand Down Expand Up @@ -1932,6 +1958,10 @@ impl<'a> ContextProvider for SessionContextProvider<'a> {
self.state.aggregate_functions().get(name).cloned()
}

fn get_window_meta(&self, name: &str) -> Option<Arc<WindowUDF>> {
self.state.window_functions().get(name).cloned()
}

fn get_variable_type(&self, variable_names: &[String]) -> Option<DataType> {
if variable_names.is_empty() {
return None;
Expand Down Expand Up @@ -1979,6 +2009,16 @@ impl FunctionRegistry for SessionState {
))
})
}

fn udwf(&self, name: &str) -> Result<Arc<WindowUDF>> {
let result = self.window_functions.get(name);

result.cloned().ok_or_else(|| {
DataFusionError::Plan(format!(
"There is no UDWF named \"{name}\" in the registry"
))
})
}
}

impl OptimizerConfig for SessionState {
Expand Down Expand Up @@ -2012,6 +2052,7 @@ impl From<&SessionState> for TaskContext {
state.config.clone(),
state.scalar_functions.clone(),
state.aggregate_functions.clone(),
state.window_functions.clone(),
state.runtime_env.clone(),
)
}
Expand Down
Loading