-
Notifications
You must be signed in to change notification settings - Fork 174
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
perf: Add criterion benchmark for aggregate expressions (#948)
- Loading branch information
Showing
3 changed files
with
209 additions
and
1 deletion.
There are no files selected for viewing
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License.use arrow::array::{ArrayRef, BooleanBuilder, Int32Builder, RecordBatch, StringBuilder}; | ||
|
||
use arrow::datatypes::{DataType, Field, Schema}; | ||
use arrow_array::builder::{Decimal128Builder, StringBuilder}; | ||
use arrow_array::{ArrayRef, RecordBatch}; | ||
use arrow_schema::SchemaRef; | ||
use comet::execution::datafusion::expressions::avg_decimal::AvgDecimal; | ||
use comet::execution::datafusion::expressions::sum_decimal::SumDecimal; | ||
use criterion::{black_box, criterion_group, criterion_main, Criterion}; | ||
use datafusion::functions_aggregate::average::avg_udaf; | ||
use datafusion::functions_aggregate::sum::sum_udaf; | ||
use datafusion::physical_expr::PhysicalExpr; | ||
use datafusion::physical_plan::aggregates::{AggregateExec, AggregateMode, PhysicalGroupBy}; | ||
use datafusion::physical_plan::memory::MemoryExec; | ||
use datafusion::physical_plan::ExecutionPlan; | ||
use datafusion_execution::TaskContext; | ||
use datafusion_expr::AggregateUDF; | ||
use datafusion_physical_expr::aggregate::AggregateExprBuilder; | ||
use datafusion_physical_expr::expressions::Column; | ||
use futures::StreamExt; | ||
use std::sync::Arc; | ||
use std::time::Duration; | ||
use tokio::runtime::Runtime; | ||
|
||
fn criterion_benchmark(c: &mut Criterion) { | ||
let mut group = c.benchmark_group("aggregate"); | ||
let num_rows = 8192; | ||
let batch = create_record_batch(num_rows); | ||
let mut batches = Vec::new(); | ||
for _ in 0..10 { | ||
batches.push(batch.clone()); | ||
} | ||
let partitions = &[batches]; | ||
let c0: Arc<dyn PhysicalExpr> = Arc::new(Column::new("c0", 0)); | ||
let c1: Arc<dyn PhysicalExpr> = Arc::new(Column::new("c1", 1)); | ||
|
||
let rt = Runtime::new().unwrap(); | ||
|
||
group.bench_function("avg_decimal_datafusion", |b| { | ||
let datafusion_sum_decimal = avg_udaf(); | ||
b.to_async(&rt).iter(|| { | ||
black_box(agg_test( | ||
partitions, | ||
c0.clone(), | ||
c1.clone(), | ||
datafusion_sum_decimal.clone(), | ||
"avg", | ||
)) | ||
}) | ||
}); | ||
|
||
group.bench_function("avg_decimal_comet", |b| { | ||
let comet_avg_decimal = Arc::new(AggregateUDF::new_from_impl(AvgDecimal::new( | ||
Arc::clone(&c1), | ||
"avg", | ||
DataType::Decimal128(38, 10), | ||
DataType::Decimal128(38, 10), | ||
))); | ||
b.to_async(&rt).iter(|| { | ||
black_box(agg_test( | ||
partitions, | ||
c0.clone(), | ||
c1.clone(), | ||
comet_avg_decimal.clone(), | ||
"avg", | ||
)) | ||
}) | ||
}); | ||
|
||
group.bench_function("sum_decimal_datafusion", |b| { | ||
let datafusion_sum_decimal = sum_udaf(); | ||
b.to_async(&rt).iter(|| { | ||
black_box(agg_test( | ||
partitions, | ||
c0.clone(), | ||
c1.clone(), | ||
datafusion_sum_decimal.clone(), | ||
"sum", | ||
)) | ||
}) | ||
}); | ||
|
||
group.bench_function("sum_decimal_comet", |b| { | ||
let comet_sum_decimal = Arc::new(AggregateUDF::new_from_impl(SumDecimal::new( | ||
"sum", | ||
Arc::clone(&c1), | ||
DataType::Decimal128(38, 10), | ||
))); | ||
b.to_async(&rt).iter(|| { | ||
black_box(agg_test( | ||
partitions, | ||
c0.clone(), | ||
c1.clone(), | ||
comet_sum_decimal.clone(), | ||
"sum", | ||
)) | ||
}) | ||
}); | ||
|
||
group.finish(); | ||
} | ||
|
||
async fn agg_test( | ||
partitions: &[Vec<RecordBatch>], | ||
c0: Arc<dyn PhysicalExpr>, | ||
c1: Arc<dyn PhysicalExpr>, | ||
aggregate_udf: Arc<AggregateUDF>, | ||
alias: &str, | ||
) { | ||
let schema = &partitions[0][0].schema(); | ||
let scan: Arc<dyn ExecutionPlan> = | ||
Arc::new(MemoryExec::try_new(partitions, Arc::clone(schema), None).unwrap()); | ||
let aggregate = create_aggregate(scan, c0.clone(), c1.clone(), schema, aggregate_udf, alias); | ||
let mut stream = aggregate | ||
.execute(0, Arc::new(TaskContext::default())) | ||
.unwrap(); | ||
while let Some(batch) = stream.next().await { | ||
let _batch = batch.unwrap(); | ||
} | ||
} | ||
|
||
fn create_aggregate( | ||
scan: Arc<dyn ExecutionPlan>, | ||
c0: Arc<dyn PhysicalExpr>, | ||
c1: Arc<dyn PhysicalExpr>, | ||
schema: &SchemaRef, | ||
aggregate_udf: Arc<AggregateUDF>, | ||
alias: &str, | ||
) -> Arc<AggregateExec> { | ||
let aggr_expr = AggregateExprBuilder::new(aggregate_udf, vec![c1]) | ||
.schema(schema.clone()) | ||
.alias(alias) | ||
.with_ignore_nulls(false) | ||
.with_distinct(false) | ||
.build() | ||
.unwrap(); | ||
|
||
Arc::new( | ||
AggregateExec::try_new( | ||
AggregateMode::Partial, | ||
PhysicalGroupBy::new_single(vec![(c0, "c0".to_string())]), | ||
vec![aggr_expr], | ||
vec![None], // no filter expressions | ||
scan, | ||
Arc::clone(schema), | ||
) | ||
.unwrap(), | ||
) | ||
} | ||
|
||
fn create_record_batch(num_rows: usize) -> RecordBatch { | ||
let mut decimal_builder = Decimal128Builder::with_capacity(num_rows); | ||
let mut string_builder = StringBuilder::with_capacity(num_rows, num_rows * 32); | ||
for i in 0..num_rows { | ||
decimal_builder.append_value(i as i128); | ||
string_builder.append_value(format!("this is string #{}", i % 1024)); | ||
} | ||
let decimal_array = Arc::new(decimal_builder.finish()); | ||
let string_array = Arc::new(string_builder.finish()); | ||
|
||
let mut fields = vec![]; | ||
let mut columns: Vec<ArrayRef> = vec![]; | ||
|
||
// string column | ||
fields.push(Field::new("c0", DataType::Utf8, false)); | ||
columns.push(string_array); | ||
|
||
// decimal column | ||
fields.push(Field::new("c1", DataType::Decimal128(38, 10), false)); | ||
columns.push(decimal_array); | ||
|
||
let schema = Schema::new(fields); | ||
RecordBatch::try_new(Arc::new(schema), columns).unwrap() | ||
} | ||
|
||
fn config() -> Criterion { | ||
Criterion::default() | ||
.measurement_time(Duration::from_millis(500)) | ||
.warm_up_time(Duration::from_millis(500)) | ||
} | ||
|
||
criterion_group! { | ||
name = benches; | ||
config = config(); | ||
targets = criterion_benchmark | ||
} | ||
criterion_main!(benches); |