Zig-based implementation of general-rank tensors! [1, 64)
- Fetch ZEIN:
zig fetch --save git+https://github.com/andrewCodeDev/ZEIN#main
- Add the module in your
build.zig
:
const zein = b.dependency("ZEIN", .{
.target = target,
.optimize = optimize,
});
exe.root_module.addImport("zein", zein.module("ZEIN"));
You can now add const zein = @import("zein");
to your file.
Tensors can be created in the following way:
// initialize underlying tensor memory:
var data = [9]i32{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
// create a rank 2, 3x3, Rowwise tensor of i32 from data:
var X = zein.Tensor(i32, 2, Rowwise).init(&data, .{ 3, 3 });
const x = X.getValue(.{0, 2}); // access value 3...
The TensorFactory offers the ability to track and free allocations:
var factory = zein.TensorFactory(f32).init(.{
.system_allocator = your_allocator, // for TensorFactory components
.tensor_allocator = your_allocator, // for TensorFactory value data
});
// Begin tracking tensor allocations (default is no-tracking):
factory.tracking(.start);
// Stop tracking tensor allocations (does not free tensors):
factory.tracking(.stop);
// Free tracked tensor allocations (no-op if no tensors are tracked):
factory.tracking(.free);
// Deinit will free the allocator and currently tracked tensors:
factory.deinit();
// Assign a new tensor from allocator:
var Y = try factory.allocTensor(2, Rowwise, .{ 10, 10 });
// Assign memory into existing tensor:
var X = Tensor(f32, 2, Rowwise).init(null, .{ 10, 10 });
try factory.allocToTensor(&X); // alloc 100 elements...
Tensor operations are are in the form of either Free Functions or Factory Functions:
-
Free Functions require operands and the destination tensor.
-
Factory Functions use operands to create the destination tensor.
The operations use compile time strings as einsum notation:
// Collapse tensor values using contraction:
zein.contraction("ijk->ji", &x, &y); // free function - assign to existing memory
var y = factory.contraction("ijk->ji", &x); // factory function - allocate new memory
// Elementary binary functions (add, multiply):
zein.add(&x, &y, &z); // free function - assign to existing memory
var x = factory.add(&x, &y); // factory function - allocate new memory
// Transpose/permutate tensor views (does not modify underlying data).
var y = x.permutate("ijk->kji");
// Elementary vectorized reduction functions (sum, product, min, max):
const a = zein.sum(&x);
const b = zein.product(&x);
const c = zein.max(&x);
const d = zein.min(&x);
The main ZEIN/Zein.zig file provides an interface for the library implementation.
Currently, tensor permutations only change the indexing of a tensor - they do not invalidate underlying memory. If the user chooses to use the TensorFactory, it will track allocations and delete them automatically when calling deinit. V1 is only tested on single thread environments - thread safety with allocators will be coming in a later version!
This library is still in the beginning phases. If you want to contribute, please contact me! This is a big job and I'll take the help!