Skip to content

Commit

Permalink
More cleanup
Browse files Browse the repository at this point in the history
  • Loading branch information
jakep-allenai committed Oct 11, 2024
1 parent 53fdb61 commit a45f86e
Showing 1 changed file with 66 additions and 81 deletions.
147 changes: 66 additions & 81 deletions pdelfin/assemblepipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import tempfile
import posixpath

from dataclasses import dataclass
from pypdf import PdfReader
from tqdm import tqdm
from typing import Optional
Expand All @@ -30,15 +31,17 @@ def __init__(self, s3_workspace: str):

def _initialize_tables(self):
self.cursor.execute("""
CREATE TABLE IF NOT EXISTS index_table (
custom_id TEXT,
CREATE TABLE IF NOT EXISTS page_results (
s3_path TEXT,
page_num INTEGER,
start_index BIGINT,
end_index BIGINT
length BIGINT,
finish_reason STRING
error STRING
)
""")
self.cursor.execute("""
CREATE INDEX IF NOT EXISTS idx_custom_id ON index_table(custom_id)
CREATE INDEX IF NOT EXISTS idx_path ON index_table(s3_path)
""")
self.cursor.execute("""
CREATE TABLE IF NOT EXISTS pdfs (
Expand All @@ -60,22 +63,24 @@ def _initialize_tables(self):
value TEXT
)
""")
self.cursor.execute("SELECT value FROM metadata WHERE key='round'")
if self.cursor.fetchone() is None:
self.cursor.execute("INSERT INTO metadata (key, value) VALUES ('round', '0')")

self.conn.commit()

def get_current_round(self):
self.cursor.execute("SELECT value FROM metadata WHERE key='round'")
def get_metadata(self, key: str) -> str:
self.cursor.execute("SELECT value FROM metadata WHERE key=?", (key,))
result = self.cursor.fetchone()
return int(result[0])
return result[0]

def get_current_round(self):
return int(self.get_metadata("round"))

def is_file_processed(self, s3_path, etag):
self.cursor.execute("SELECT etag FROM processed_files WHERE s3_path = ?", (s3_path,))
result = self.cursor.fetchone()
return result is not None and result[0] == etag

def add_index_entries(self, index_entries):
# TODO MAke it take batchInferenceLines
if index_entries:
self.cursor.executemany("""
INSERT INTO index_table (custom_id, s3_path, start_index, end_index)
Expand Down Expand Up @@ -113,59 +118,20 @@ def get_pdf_status(self, s3_path: str) -> Optional[str]:
def close(self):
self.conn.close()

def build_index(s3_path):
db_manager = DatabaseManager(s3_path)

bucket, prefix = parse_s3_path(s3_path)

# List all .json and .jsonl files under s3_path with their ETags
files = expand_s3_glob(s3_path)

if not files:
print("No .json or .jsonl files found in the specified S3 path.")
db_manager.close()
return

# Prepare a list of files that need processing
files_to_process = [
(key, etag) for key, etag in files.items()
if not db_manager.is_file_processed(key, etag)
]

if not files_to_process:
print("All files are up to date. No processing needed.")
db_manager.close()
return

# Use ProcessPoolExecutor to process files with tqdm progress bar
with ProcessPoolExecutor() as executor:
futures = [
executor.submit(process_file, bucket, key, etag)
for key, etag in files_to_process
]
for future in tqdm(as_completed(futures), total=len(futures), desc="Processing files"):
s3_path, key, etag, index_entries = future.result()
if index_entries:
db_manager.add_index_entries(index_entries)
# Update the processed_files table
db_manager.update_processed_file(key, etag)

db_manager.close()

def parse_s3_path(s3_path):
if not s3_path.startswith('s3://'):
raise ValueError('s3_path must start with s3://')
path = s3_path[5:]
bucket, _, prefix = path.partition('/')
return bucket, prefix


def expand_s3_glob(s3_glob: str) -> dict[str, str]:
parsed = urlparse(s3_glob)
bucket_name = parsed.netloc
prefix = os.path.dirname(parsed.path.lstrip('/')).rstrip('/') + "/"
pattern = os.path.basename(parsed.path)


paginator = s3.get_paginator('list_objects_v2')
page_iterator = paginator.paginate(Bucket=bucket_name, Prefix=prefix)

Expand All @@ -178,37 +144,43 @@ def expand_s3_glob(s3_glob: str) -> dict[str, str]:

return matched_files

def process_file(bucket, key, etag):
s3 = boto3.client('s3') # Initialize s3 client in the worker process
s3_path = f's3://{bucket}/{key}'
try:
# Get the object
obj = s3.get_object(Bucket=bucket, Key=key)
# Read the content as bytes
content = obj['Body'].read()
# Process the file as JSONL
index_entries = process_jsonl_content(content, s3_path)
# Return the necessary data to the main process
return s3_path, key, etag, index_entries
except Exception as e:
print(f"Error processing file {s3_path}: {e}")
return s3_path, key, etag, []

def process_jsonl_content(content, s3_path):
@dataclass(frozen=True)
class BatchInferenceLine:
s3_path: str
page_num: int # 1 indexed!
start_index: int
length: int
finish_reason: str
error: Optional[str]

def parse_custom_id(custom_id: str) -> tuple[str, int]:
s3_path = custom_id[:custom_id.rindex("-")]
page_num = int(custom_id[custom_id.rindex("-") + 1:])

return s3_path, page_num

def process_jsonl_content(s3_path) -> list[BatchInferenceLine]:
content = get_s3_bytes(s3_path).decode("utf-8")

start_index = 0
index_entries = []
lines = content.splitlines(keepends=True)
for line in lines:
line_length = len(line)
end_index = start_index + line_length

try:
data = json.loads(line)
custom_id = data.get('custom_id')
if custom_id:
index_entries.append((custom_id, s3_path, start_index, end_index))
s3_path, page_num = parse_custom_id(data["custom_id"])

assert "outputs" in data and len(data["outputs"]) > 0, "No outputs from model detected"

index_entries.append(BatchInferenceLine(s3_path, page_num, start_index, line_length,
finish_reason=data["outputs"][0]["finish_reason"], error=data.get("completion_error", None)))
except json.JSONDecodeError:
pass # Handle JSON decode errors if necessary
start_index = end_index

start_index = start_index + line_length

return index_entries

def get_s3_bytes(s3_path: str, start_index: Optional[int] = None, end_index: Optional[int] = None) -> bytes:
Expand Down Expand Up @@ -246,7 +218,7 @@ def get_pdf_num_pages(s3_path: str) -> Optional[int]:
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Manager for running millions of PDFs through a batch inference pipeline')
parser.add_argument('workspace', help='The S3 path where work will be done e.g., s3://bucket/prefix/)')
parser.add_argument('--pdfs', help='Glob path to PDFs (local or s3)', default=None)
parser.add_argument('--add_pdfs', help='Glob path to add PDFs (s3) to the workspace', default=None)
parser.add_argument('--file_size_limit', type=int, default=250, help='Max file size in MB')
args = parser.parse_args()

Expand All @@ -258,12 +230,12 @@ def get_pdf_num_pages(s3_path: str) -> Optional[int]:
executor = ProcessPoolExecutor()

# If you have new PDFs, add them to the list
if args.pdfs:
assert args.pdfs.startswith("s3://"), "PDFs must live on s3"
if args.add_pdfs:
assert args.add_pdfs.startswith("s3://"), "PDFs must live on s3"

print(f"Querying all PDFs at {args.pdfs}")
print(f"Querying all PDFs at {args.add_pdfs}")

all_pdfs = expand_s3_glob(args.pdfs)
all_pdfs = expand_s3_glob(args.add_pdfs)
print(f"Found {len(all_pdfs)} total pdf paths")

all_pdfs = [pdf for pdf in all_pdfs if not db.pdf_exists(pdf)]
Expand All @@ -279,8 +251,21 @@ def get_pdf_num_pages(s3_path: str) -> Optional[int]:


# Now build an index of all the pages that were processed within the workspace so far
build_index(f"{args.workspace}/*.jsonl")
inference_output_paths = expand_s3_glob(f"{args.workspace}/inference_outputs/*.jsonl")

inference_output_paths = [
(key, etag) for key, etag in inference_output_paths.items()
if not db.is_file_processed(key, etag)
]

future_to_path = {executor.submit(process_jsonl_content, s3_path): s3_path for s3_path, etag in inference_output_paths}

for future in tqdm(as_completed(future_to_path), total=len(future_to_path)):
s3_path = future_to_path[future]

inference_lines = future.result()

db.add_index_entries(inference_lines)

db.update_processed_file(s3_path, etag=TODO)

# Now, for each pending book, find all pages which still need to be processed
# and add them to the next round's batch inference jobs

0 comments on commit a45f86e

Please sign in to comment.