generated from allenai/python-package-template
-
Notifications
You must be signed in to change notification settings - Fork 397
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Importing core training config stuff from dolma refine
- Loading branch information
1 parent
bab32aa
commit 7d2c447
Showing
11 changed files
with
1,517 additions
and
1 deletion.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
import json | ||
from logging import Logger | ||
from typing import Optional, Type | ||
|
||
import smart_open | ||
import torch | ||
from peft.peft_model import PeftModel | ||
from transformers import ( | ||
AutoModelForCausalLM, | ||
AutoModelForSeq2SeqLM, | ||
AutoModelWithLMHead, | ||
AutoTokenizer, | ||
) | ||
|
||
from .config import ModelConfig | ||
from .loggers import get_logger | ||
from .paths import cached_path, exists, get_cache_dir, join_path, resource_to_filename | ||
|
||
__all__ = ["load_model", "cache_merged_model"] | ||
|
||
|
||
def get_model_cls(config: ModelConfig) -> Type[AutoModelWithLMHead]: | ||
if config.arch == "seq2seq": | ||
return AutoModelForSeq2SeqLM # pyright: ignore | ||
elif config.arch == "causal" or config.arch == "vllm": | ||
return AutoModelForCausalLM # pyright: ignore | ||
else: | ||
raise ValueError(f"Unsupported model architecture: {config.arch}") | ||
|
||
|
||
def get_adapter_config(config: ModelConfig) -> dict: | ||
local_path = cached_path(config.name_or_path) | ||
if exists(adapter_config_path := join_path("", local_path, "adapter_config.json")): | ||
with smart_open.open(adapter_config_path, "rt", encoding="utf-8") as f: | ||
return json.load(f) | ||
return {} | ||
|
||
|
||
def load_model(config: ModelConfig, logger: Optional[Logger] = None) -> AutoModelWithLMHead: | ||
logger = logger or get_logger(__file__, level="INFO") | ||
|
||
logger.info(f"Loading model from {config.name_or_path}") | ||
local_path = cached_path(config.name_or_path) | ||
if local_path != config.name_or_path: | ||
logger.info(f"Model cached at {local_path}") | ||
|
||
if exists(adapter_config_path := join_path("", local_path, "adapter_config.json")): | ||
logger.info(f"Loading LoRA adapter from {adapter_config_path}") | ||
with smart_open.open(adapter_config_path) as f: | ||
adapter_config = json.load(f) | ||
base_model_name_or_path = adapter_config["base_model_name_or_path"] | ||
enable_lora = True | ||
else: | ||
base_model_name_or_path = local_path | ||
enable_lora = False | ||
|
||
model = get_model_cls(config).from_pretrained( | ||
base_model_name_or_path, | ||
device_map="auto", | ||
trust_remote_code=config.trust_remote_code, | ||
# low_cpu_mem_usage=model_config.low_cpu_mem_usage, | ||
use_flash_attention_2=True if config.use_flash_attn else False, | ||
revision=config.model_revision, | ||
torch_dtype=torch.bfloat16 if config.use_flash_attn else getattr(torch, config.dtype), | ||
) | ||
logger.info(f"Successfully loaded base model from {base_model_name_or_path}") | ||
|
||
if enable_lora: | ||
peft_model = PeftModel.from_pretrained(model, local_path) | ||
model = peft_model.merge_and_unload() | ||
logger.info(f"Successfully loaded LoRA adapter from base model: {base_model_name_or_path}") | ||
|
||
return model | ||
|
||
|
||
def cache_merged_model(config: ModelConfig, logger: Optional[Logger] = None) -> str: | ||
logger = logger or get_logger(__file__, level="INFO") | ||
|
||
base_local_path = cached_path(config.name_or_path) | ||
adapter_config = get_adapter_config(config) | ||
if not adapter_config: | ||
logger.info("No adapter config found; using base model") | ||
return base_local_path | ||
|
||
local_fn = resource_to_filename(json.dumps({"adapter": adapter_config, "model": config.name_or_path})) | ||
merged_local_path = f"{get_cache_dir()}/{local_fn}" | ||
|
||
if not exists(merged_local_path): | ||
model = load_model(config=config, logger=logger) | ||
tokenizer = AutoTokenizer.from_pretrained(base_local_path) | ||
|
||
logger.info(f"Saving merged model to {merged_local_path}") | ||
model.save_pretrained(merged_local_path) | ||
tokenizer.save_pretrained(merged_local_path) | ||
|
||
return merged_local_path |
Oops, something went wrong.