generated from allenai/python-package-template
-
Notifications
You must be signed in to change notification settings - Fork 394
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0311b44
commit 72d2fa2
Showing
2 changed files
with
58 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -85,6 +85,7 @@ train = [ | |
"omegaconf", | ||
"s3fs", | ||
"necessary", | ||
"einops", | ||
"transformers>=4.45.1" | ||
] | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
import unittest | ||
|
||
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig | ||
from PIL import Image | ||
import requests | ||
|
||
class MolmoProcessorTest(unittest.TestCase): | ||
def test_molmo_demo(self): | ||
# load the processor | ||
processor = AutoProcessor.from_pretrained( | ||
'allenai/Molmo-7B-O-0924', | ||
trust_remote_code=True, | ||
torch_dtype='auto', | ||
) | ||
|
||
# load the model | ||
model = AutoModelForCausalLM.from_pretrained( | ||
'allenai/Molmo-7B-O-0924', | ||
trust_remote_code=True, | ||
torch_dtype='auto', | ||
) | ||
|
||
device = "cuda:0" | ||
|
||
model = model.to(device) | ||
|
||
# process the image and text | ||
inputs = processor.process( | ||
images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)], | ||
text="Describe this image." | ||
) | ||
|
||
# move inputs to the correct device and make a batch of size 1 | ||
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} | ||
|
||
print("Raw inputs") | ||
print(inputs) | ||
|
||
print("\nShapes") | ||
print({(x, y.shape) for x,y in inputs.items()}) | ||
|
||
print("\nTokens") | ||
print(processor.tokenizer.batch_decode(inputs["input_ids"])) | ||
|
||
# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated | ||
output = model.generate_from_batch( | ||
inputs, | ||
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), | ||
tokenizer=processor.tokenizer | ||
) | ||
|
||
# only get generated tokens; decode them to text | ||
generated_tokens = output[0,inputs['input_ids'].size(1):] | ||
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) | ||
|
||
# print the generated text | ||
print(generated_text) |