Skip to content

Commit

Permalink
Merge branch 'release/v3.1.1'
Browse files Browse the repository at this point in the history
Conflicts:
	setup.py
  • Loading branch information
albarji committed May 30, 2015
2 parents 50449db + 7999ce4 commit 1d435e3
Show file tree
Hide file tree
Showing 3 changed files with 129 additions and 15 deletions.
79 changes: 66 additions & 13 deletions prox_tv/_prox_tv.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,43 @@ def _call(fn, *args):
return fn(*args_m)


def force_float_scalar(x):
r"""Forces an scalar value into float format
Parameters
----------
x: scalar value to check
Returns
-------
float
Float representation of the provided value
"""
if not isinstance(x, float):
return float(x)
else:
return x


def force_float_matrix(x):
r"""Forces a numpy matrix into float format
Parameters
----------
x: numpy array
matrix to check
Returns
-------
numpy array
Float representation of the provided matrix
"""
if x.dtype != np.dtype('float64'):
return x.astype('float')
else:
return x


def tv1_1d(x, w, sigma=0.05, method='tautstring'):
r"""1D proximal operator for :math:`\ell_1`.
Expand All @@ -194,7 +231,7 @@ def tv1_1d(x, w, sigma=0.05, method='tautstring'):
Parameters
----------
y : numpy array
x : numpy array
The signal we are approximating.
w : float
The non-negative weight in the optimization problem.
Expand All @@ -216,6 +253,8 @@ def tv1_1d(x, w, sigma=0.05, method='tautstring'):
"""
assert method in ('tautstring', 'pn', 'condat', 'dp')
assert w >= 0
w = force_float_scalar(w)
x = force_float_matrix(x)
y = np.zeros(np.size(x))
if method == 'tautstring':
_call(_lib.tautString_TV1, x, w, y, np.size(x))
Expand All @@ -240,7 +279,7 @@ def tv1w_1d(x, w, method='tautstring', sigma=0.05):
Parameters
----------
y : numpy array
x : numpy array
The signal we are approximating.
w : numpy array
The non-negative weights in the optimization problem.
Expand All @@ -256,6 +295,8 @@ def tv1w_1d(x, w, method='tautstring', sigma=0.05):
"""
assert np.all(w >= 0)
assert np.size(x)-1 == np.size(w)
w = force_float_matrix(w)
x = force_float_matrix(x)
y = np.zeros(np.size(x))
if method == 'tautstring':
_call(_lib.tautString_TV1_Weighted, x, w, y, np.size(x))
Expand All @@ -277,7 +318,7 @@ def tv2_1d(x, w, method='mspg'):
Parameters
----------
y : numpy array
x : numpy array
The signal we are approximating.
w : float
The non-negative weight in the optimization problem.
Expand All @@ -295,6 +336,8 @@ def tv2_1d(x, w, method='mspg'):
"""
assert w >= 0
assert method in ('ms', 'pg', 'mspg')
w = force_float_scalar(w)
x = force_float_matrix(x)
info = np.zeros(_N_INFO)
y = np.zeros(np.size(x), order='F')
if method == 'ms':
Expand All @@ -318,7 +361,7 @@ def tvp_1d(x, w, p, method='gpfw', max_iters=0):
Parameters
----------
y : numpy array
x : numpy array
The signal we are approximating.
w : float
The non-negative weight in the optimization problem.
Expand All @@ -342,6 +385,9 @@ def tvp_1d(x, w, p, method='gpfw', max_iters=0):
assert method in methods
assert w >= 0
assert p >= 1
w = force_float_scalar(w)
p = force_float_scalar(p)
x = force_float_matrix(x)
info = np.zeros(_N_INFO)
y = np.zeros(np.size(x), order='F')
_call(methods[method], x, w, y, info, np.size(x), p, _ffi.NULL)
Expand All @@ -360,7 +406,7 @@ def tv1_2d(x, w, n_threads=1, max_iters=0, method='dr'):
Parameters
----------
y : numpy array
x : numpy array
The signal we are approximating.
w : float
The non-negative weight in the optimization problem.
Expand All @@ -384,7 +430,8 @@ def tv1_2d(x, w, n_threads=1, max_iters=0, method='dr'):
"""
assert w >= 0
assert method in ('dr', 'pd', 'yang', 'condat', 'chambolle-pock')
x = np.asfortranarray(x)
x = np.asfortranarray(x, dtype='float64')
w = force_float_scalar(w)
y = np.asfortranarray(np.zeros(x.shape))
info = np.zeros(_N_INFO)
if method == 'yang':
Expand Down Expand Up @@ -414,7 +461,7 @@ def tv1w_2d(x, w_col, w_row, max_iters=0, n_threads=1):
Parameters
----------
y : numpy array
x : numpy array
The MxN matrix we are approximating.
w_col : numpy array
The (M-1) x N matrix of column weights :math:`w^c`.
Expand All @@ -431,10 +478,10 @@ def tv1w_2d(x, w_col, w_row, max_iters=0, n_threads=1):
M, N = x.shape
assert w_col.shape == (M-1, N)
assert w_row.shape == (M, N-1)
x = np.asfortranarray(x)
x = np.asfortranarray(x, dtype='float64')
y = np.zeros(x.shape, order='F')
w_col = np.asfortranarray(w_col)
w_row = np.asfortranarray(w_row)
w_col = np.asfortranarray(w_col, dtype='float64')
w_row = np.asfortranarray(w_row, dtype='float64')
info = np.zeros(_N_INFO)
_call(_lib.DR2L1W_TV, M, N, x, w_col, w_row, y, n_threads, max_iters, info)
return y
Expand Down Expand Up @@ -477,7 +524,11 @@ def tvp_2d(x, w_col, w_row, p_col, p_row, n_threads=1, max_iters=0):
assert p_row >= 1

info = np.zeros(_N_INFO)
x = np.asfortranarray(x)
x = np.asfortranarray(x, dtype='float64')
w_col = force_float_scalar(w_col)
w_row = force_float_scalar(w_row)
p_col = force_float_scalar(p_col)
p_row = force_float_scalar(p_row)
y = np.zeros(np.shape(x), order='F')
_call(_lib.DR2_TV,
x.shape[0], x.shape[1], x, w_col, w_row, p_col, p_row, y,
Expand All @@ -500,7 +551,7 @@ def tvgen(x, ws, ds, ps, n_threads=1, max_iters=0):
Parameters
----------
y : numpy array
x : numpy array
The matrix signal we are approximating.
ws : list
Weights to apply in each penalty term.
Expand All @@ -526,7 +577,9 @@ def tvgen(x, ws, ds, ps, n_threads=1, max_iters=0):
assert max_iters >= 0

info = np.zeros(_N_INFO)
x = np.asfortranarray(x)
x = np.asfortranarray(x, dtype='float64')
ws = force_float_matrix(ws)
ps = force_float_matrix(ps)
y = np.zeros(np.shape(x), order='F')

# Run algorithm depending on the structure of the data and the requested penalties
Expand Down
61 changes: 61 additions & 0 deletions prox_tv/prox_tv_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,28 @@ def test_tv1w_1d():
solutions = [tv1w_1d(x, w, method=method) for method in methods]
for i in range(len(solutions)-1):
assert np.allclose(solutions[i], solutions[i+1])


def test_tv1w_1d_uniform_weights():
for _ in range(20):
dimension = np.random.randint(1e1, 1e3)
x = 100*np.random.randn(dimension)
w1 = np.random.rand()
w = np.ones(dimension-1) * w1
solw = tv1w_1d(x, w)
sol = tv1_1d(x, w1)
assert np.allclose(solw, sol)


def test_tv1w_1d_uniform_weights_small_input():
for _ in range(1000):
dimension = np.random.randint(2, 4)
x = 100*np.random.randn(dimension)
w1 = np.random.rand()
w = np.ones(dimension-1) * w1
solw = tv1w_1d(x, w)
sol = tv1_1d(x, w1)
assert np.allclose(solw, sol)


def test_tv1_1d():
Expand Down Expand Up @@ -65,3 +87,42 @@ def test_tv1_2d():
solutions.append(tv1w_2d(x, w_cols, w_rows, max_iters=5000))
for i in range(1, len(solutions)):
assert np.allclose(solutions[i], solutions[0], atol=1e-3)


def test_tv1w_2d_uniform_weights():
for _ in range(20):
rows = np.random.randint(1e1, 3e1)
cols = np.random.randint(1e1, 3e1)
x = 100*np.random.randn(rows, cols)
w1 = np.random.rand()
w_rows = np.ones([rows-1, cols]) * w1
w_cols = np.ones([rows, cols-1]) * w1
solw = tv1w_2d(x, w_rows, w_cols, max_iters=5000)
solw1 = tv1_2d(x, w1, max_iters=5000)
assert np.allclose(solw, solw1, atol=1e-3)


def test_tv1w_2d_uniform_weights_small_input():
for _ in range(1000):
rows = np.random.randint(2, 4)
cols = np.random.randint(2, 4)
x = 100*np.random.randn(rows, cols)
w1 = np.random.rand()
w_rows = np.ones([rows-1, cols]) * w1
w_cols = np.ones([rows, cols-1]) * w1
solw = tv1w_2d(x, w_rows, w_cols, max_iters=5000)
solw1 = tv1_2d(x, w1, max_iters=5000)
assert np.allclose(solw, solw1, atol=1e-3)


def test_tv1w_2d_emengd():
r"""Issue reported by emengd
Make the solver fail due to missing checks on integer arguments
"""
a = -np.array([[1,2,3],[4,5,6],[7,8,9]])/10.
sol1 = tv1w_2d(a, np.array([[1,1,1],[1,1,1]]),
np.array([[1,1],[1,1],[1,1]]), max_iters=100)
sol2 = tv1_2d(a, 1)
assert np.allclose(sol1, sol2, atol=1e-3)

4 changes: 2 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ def finalize_options(self):

setup(
name="prox_tv",
version="3.1.0",
version="3.1.1",
description="Toolbox for fast Total Variation proximity operators",
long_description="proxTV is a toolbox implementing blazing fast implementations of Total Variation proximity operators. While the core algorithms are implemented in C to achieve high efficiency, Matlab and Python interfaces are provided for ease of use. The library provides efficient solvers for a variety of Total Variation proximity problems, with address input signals of any dimensionality (1d, images, video, ...) and different norms to apply in the Total Variation term.",
packages=['prox_tv'],
Expand All @@ -50,7 +50,7 @@ def finalize_options(self):
package_data={
'prox_tv': ['src/*.h', 'src/demos/*']
},
author="Alvaro Barbero, Suvrit Sra",
author="Alvaro Barbero, Suvrit Sra, Josip Djolonga (python bindings)",
author_email="[email protected]",
url='https://github.com/albarji/proxTV',
license='BSD',
Expand Down

0 comments on commit 1d435e3

Please sign in to comment.