forked from taichi-dev/taichi
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[lang] Implement experimental CG(Conjugate Gradient) solver in Taichi…
…-lang (taichi-dev#7690) Issue: taichi-dev#7634 ### Brief Summary This PR implements a matrix-free CG (Conjugate-Gradient) solver in Taichi. The solver targets to solve the linear equation system: $$ Ax = b$$ where $A$ is implicitly represented as a `LinearOperator` instead of a explicitly stored matrix, hence the name "matrix-free". --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
88e361b
commit 4394d04
Showing
3 changed files
with
163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
from math import sqrt | ||
|
||
from taichi.lang.exception import TaichiRuntimeError, TaichiTypeError | ||
|
||
import taichi as ti | ||
|
||
|
||
@ti.data_oriented | ||
class LinearOperator: | ||
def __init__(self, matvec_kernel): | ||
self._matvec = matvec_kernel | ||
|
||
def matvec(self, x, Ax): | ||
if x.shape != Ax.shape: | ||
raise TaichiRuntimeError( | ||
f"Dimension mismatch x.shape{x.shape} != Ax.shape{Ax.shape}.") | ||
self._matvec(x, Ax) | ||
|
||
|
||
def taichi_cg_solver(A, b, x, tol=1e-6, maxiter=5000, quiet=True): | ||
if b.dtype != x.dtype: | ||
raise TaichiTypeError( | ||
f"Dtype mismatch b.dtype({b.dtype}) != x.dtype({x.dtype}).") | ||
if str(b.dtype) == 'f32': | ||
solver_dtype = ti.f32 | ||
elif str(b.dtype) == 'f64': | ||
solver_dtype = ti.f64 | ||
else: | ||
raise TaichiTypeError(f"Not supported dtype: {b.dtype}") | ||
if b.shape != x.shape: | ||
raise TaichiRuntimeError( | ||
f"Dimension mismatch b.shape{b.shape} != x.shape{x.shape}.") | ||
|
||
size = b.shape | ||
vector_fields_builder = ti.FieldsBuilder() | ||
p = ti.field(dtype=solver_dtype) | ||
r = ti.field(dtype=solver_dtype) | ||
Ap = ti.field(dtype=solver_dtype) | ||
vector_fields_builder.dense(ti.ij, size).place(p, r, Ap) | ||
vector_fields_snode_tree = vector_fields_builder.finalize() | ||
|
||
scalar_builder = ti.FieldsBuilder() | ||
alpha = ti.field(dtype=solver_dtype) | ||
beta = ti.field(dtype=solver_dtype) | ||
scalar_builder.place(alpha, beta) | ||
scalar_snode_tree = scalar_builder.finalize() | ||
|
||
@ti.kernel | ||
def init(): | ||
for I in ti.grouped(x): | ||
r[I] = b[I] | ||
p[I] = 0.0 | ||
Ap[I] = 0.0 | ||
|
||
@ti.kernel | ||
def reduce(p: ti.template(), q: ti.template()) -> solver_dtype: | ||
result = 0.0 | ||
for I in ti.grouped(p): | ||
result += p[I] * q[I] | ||
return result | ||
|
||
@ti.kernel | ||
def update_x(): | ||
for I in ti.grouped(x): | ||
x[I] += alpha[None] * p[I] | ||
|
||
@ti.kernel | ||
def update_r(): | ||
for I in ti.grouped(r): | ||
r[I] -= alpha[None] * Ap[I] | ||
|
||
@ti.kernel | ||
def update_p(): | ||
for I in ti.grouped(p): | ||
p[I] = r[I] + beta[None] * p[I] | ||
|
||
def solve(): | ||
init() | ||
initial_rTr = reduce(r, r) | ||
if not quiet: | ||
print(f'>>> Initial residual = {initial_rTr:e}') | ||
old_rTr = initial_rTr | ||
update_p() | ||
# -- Main loop -- | ||
for i in range(maxiter): | ||
A._matvec(p, Ap) # compute Ap = A x p | ||
pAp = reduce(p, Ap) | ||
alpha[None] = old_rTr / pAp | ||
update_x() | ||
update_r() | ||
new_rTr = reduce(r, r) | ||
if sqrt(new_rTr) < tol: | ||
if not quiet: | ||
print('>>> Conjugate Gradient method converged.') | ||
print(f'>>> #iterations {i}') | ||
break | ||
beta[None] = new_rTr / old_rTr | ||
update_p() | ||
old_rTr = new_rTr | ||
if not quiet: | ||
print(f'>>> Iter = {i+1:4}, Residual = {sqrt(new_rTr):e}') | ||
|
||
solve() | ||
vector_fields_snode_tree.destroy() | ||
scalar_snode_tree.destroy() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
import math | ||
|
||
import pytest | ||
from taichi.linalg import LinearOperator, taichi_cg_solver | ||
|
||
import taichi as ti | ||
from tests import test_utils | ||
|
||
vk_on_mac = (ti.vulkan, 'Darwin') | ||
|
||
|
||
@pytest.mark.parametrize("ti_dtype", [ti.f32, ti.f64]) | ||
@test_utils.test(arch=[ti.cpu, ti.cuda, ti.vulkan], exclude=[vk_on_mac]) | ||
def test_taichi_cg(ti_dtype): | ||
GRID = 32 | ||
Ax = ti.field(dtype=ti_dtype, shape=(GRID, GRID)) | ||
x = ti.field(dtype=ti_dtype, shape=(GRID, GRID)) | ||
b = ti.field(dtype=ti_dtype, shape=(GRID, GRID)) | ||
|
||
@ti.kernel | ||
def init(): | ||
for i, j in ti.ndrange(GRID, GRID): | ||
xl = i / (GRID - 1) | ||
yl = j / (GRID - 1) | ||
b[i, j] = ti.sin(2 * math.pi * xl) * ti.sin(2 * math.pi * yl) | ||
x[i, j] = 0.0 | ||
|
||
@ti.kernel | ||
def compute_Ax(v: ti.template(), mv: ti.template()): | ||
for i, j in v: | ||
l = v[i - 1, j] if i - 1 >= 0 else 0.0 | ||
r = v[i + 1, j] if i + 1 <= GRID - 1 else 0.0 | ||
t = v[i, j + 1] if j + 1 <= GRID - 1 else 0.0 | ||
b = v[i, j - 1] if j - 1 >= 0 else 0.0 | ||
# Avoid ill-conditioned matrix A | ||
mv[i, j] = 20 * v[i, j] - l - r - t - b | ||
|
||
@ti.kernel | ||
def check_solution(sol: ti.template(), ans: ti.template(), | ||
tol: ti_dtype) -> bool: | ||
exit_code = True | ||
for i, j in ti.ndrange(GRID, GRID): | ||
if ti.abs(ans[i, j] - sol[i, j]) < tol: | ||
pass | ||
else: | ||
exit_code = False | ||
return exit_code | ||
|
||
A = LinearOperator(compute_Ax) | ||
init() | ||
taichi_cg_solver(A, b, x, maxiter=10 * GRID * GRID, tol=1e-18, quiet=True) | ||
compute_Ax(x, Ax) | ||
# `tol` can't be < 1e-6 for ti.f32 because of accumulating round-off error; | ||
# see https://en.wikipedia.org/wiki/Conjugate_gradient_method#cite_note-6 | ||
# for more details. | ||
result = check_solution(Ax, b, tol=1e-6) | ||
assert result |