Skip to content

Classic builder cache poisoning

Moderate severity GitHub Reviewed Published Feb 1, 2024 in moby/moby • Updated Jul 5, 2024

Package

gomod github.com/docker/docker (Go)

Affected versions

>= 25.0.0, < 25.0.2
< 24.0.9

Patched versions

25.0.2
24.0.9
gomod github.com/moby/moby (Go)
< 24.0.9
>= 25.0.0, < 25.0.2
24.0.9
25.0.2

Description

The classic builder cache system is prone to cache poisoning if the image is built FROM scratch.
Also, changes to some instructions (most important being HEALTHCHECK and ONBUILD) would not cause a cache miss.

An attacker with the knowledge of the Dockerfile someone is using could poison their cache by making them pull a specially crafted image that would be considered as a valid cache candidate for some build steps.

For example, an attacker could create an image that is considered as a valid cache candidate for:

FROM scratch
MAINTAINER Pawel

when in fact the malicious image used as a cache would be an image built from a different Dockerfile.

In the second case, the attacker could for example substitute a different HEALTCHECK command.

Impact

23.0+ users are only affected if they explicitly opted out of Buildkit (DOCKER_BUILDKIT=0 environment variable) or are using the /build API endpoint (which uses the classic builder by default).

All users on versions older than 23.0 could be impacted. An example could be a CI with a shared cache, or just a regular Docker user pulling a malicious image due to misspelling/typosquatting.

Image build API endpoint (/build) and ImageBuild function from github.com/docker/docker/client is also affected as it the uses classic builder by default.

Patches

Patches are included in Moby releases:

  • v25.0.2
  • v24.0.9
  • v23.0.10

Workarounds

  • Use --no-cache or use Buildkit if possible (DOCKER_BUILDKIT=1, it's default on 23.0+ assuming that the buildx plugin is installed).
  • Use Version = types.BuilderBuildKit or NoCache = true in ImageBuildOptions for ImageBuild call.

References

@tonistiigi tonistiigi published to moby/moby Feb 1, 2024
Published by the National Vulnerability Database Feb 1, 2024
Published to the GitHub Advisory Database Feb 1, 2024
Reviewed Feb 1, 2024
Last updated Jul 5, 2024

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
High
Privileges required
None
User interaction
Required
Scope
Changed
Confidentiality
Low
Integrity
High
Availability
Low

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:H/PR:N/UI:R/S:C/C:L/I:H/A:L

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(24th percentile)

CVE ID

CVE-2024-24557

GHSA ID

GHSA-xw73-rw38-6vjc

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.