forked from keras-team/keras-hub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Clean up and add our gemma conversion script (keras-team#1493)
* Clean up and add our gemma conversion script From flax -> keras. Useful to have as reference. * Fix comments * Convert to bfloat16 weights * Review comment
- Loading branch information
1 parent
29a87cb
commit 7e3dfc8
Showing
1 changed file
with
224 additions
and
0 deletions.
There are no files selected for viewing
224 changes: 224 additions & 0 deletions
224
tools/checkpoint_conversion/convert_gemma_checkpoints.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
# Copyright 2023 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
Convert Gemma flax checkpoints to the Keras format. | ||
Setup: | ||
pip install -r requirements.txt | ||
pip install git+https://github.com/google-deepmind/gemma.git | ||
python pip_build.py --install | ||
Usage: | ||
cd tools/checkpoint_conversion | ||
python convert_gemma_checkpoints.py --preset gemma_2b_en | ||
""" | ||
|
||
import os | ||
|
||
os.environ["KERAS_BACKEND"] = "jax" | ||
# No GPU for conversion, makes memory management easier. | ||
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | ||
|
||
import kagglehub # noqa: E402 | ||
import keras # noqa: E402 | ||
import numpy as np # noqa: E402 | ||
import sentencepiece # noqa: E402 | ||
from absl import app # noqa: E402 | ||
from absl import flags # noqa: E402 | ||
from gemma import params as params_lib # noqa: E402 | ||
from gemma import sampler as sampler_lib # noqa: E402 | ||
from gemma import transformer as transformer_lib # noqa: E402 | ||
|
||
import keras_nlp # noqa: E402 | ||
|
||
FLAGS = flags.FLAGS | ||
|
||
PRESET_MAP = { | ||
"gemma_2b_en": "google/gemma/flax/2b", | ||
"gemma_7b_en": "google/gemma/flax/7b", | ||
"gemma_instruct_2b_en": "google/gemma/flax/2b-it", | ||
"gemma_instruct_7b_en": "google/gemma/flax/7b-it", | ||
} | ||
|
||
|
||
flags.DEFINE_string( | ||
"preset", | ||
None, | ||
f'Must be one of {",".join(PRESET_MAP.keys())}', | ||
required=True, | ||
) | ||
|
||
|
||
def download_flax_model(handle): | ||
return kagglehub.model_download(handle) | ||
|
||
|
||
def convert_model(flax_config, vocab_size): | ||
return keras_nlp.models.GemmaBackbone( | ||
vocabulary_size=vocab_size, | ||
num_layers=flax_config.num_layers, | ||
num_query_heads=flax_config.num_heads, | ||
num_key_value_heads=flax_config.num_kv_heads, | ||
hidden_dim=flax_config.embed_dim, | ||
intermediate_dim=flax_config.hidden_dim * 2, | ||
head_dim=flax_config.head_dim, | ||
) | ||
|
||
|
||
def convert_tokenizer(proto_path): | ||
return keras_nlp.models.GemmaTokenizer(proto=proto_path) | ||
|
||
|
||
def convert_weights(keras_model, flax_config, flax_params): | ||
# Chomp the embedding weights. Upstream pads for TPU efficiency, but this | ||
# leads to weird gotchas (you need to disregard part of your output logits). | ||
embeddings = flax_params["transformer"]["embedder"]["input_embedding"] | ||
embeddings = np.asarray(embeddings[: keras_model.vocabulary_size, :]) | ||
keras_model.get_layer("token_embedding").set_weights([embeddings]) | ||
keras_model.get_layer("final_normalization").set_weights( | ||
[np.asarray(flax_params["transformer"]["final_norm"]["scale"])] | ||
) | ||
for i in range(flax_config.num_layers): | ||
flax_layer_name = f"layer_{i}" | ||
keras_block = keras_model.get_layer(f"decoder_block_{i}") | ||
|
||
flax_block = flax_params["transformer"][flax_layer_name] | ||
keras_block.pre_attention_norm.set_weights( | ||
[flax_block["pre_attention_norm"]["scale"]] | ||
) | ||
keras_block.pre_ffw_norm.set_weights( | ||
[flax_block["pre_ffw_norm"]["scale"]] | ||
) | ||
|
||
keras_block.gating_ffw.set_weights( | ||
[flax_block["mlp"]["gating_einsum"][0]] | ||
) | ||
keras_block.gating_ffw_2.set_weights( | ||
[flax_block["mlp"]["gating_einsum"][1]] | ||
) | ||
keras_block.ffw_linear.set_weights([flax_block["mlp"]["linear"]]) | ||
|
||
attn_block = flax_block["attn"] | ||
if flax_config.num_heads != flax_config.num_kv_heads: | ||
# MQA. | ||
keras_block.attention.query_dense.kernel.assign( | ||
np.asarray(attn_block["q_einsum"]["w"][:, :, :]) | ||
) | ||
keras_block.attention.key_dense.kernel.assign( | ||
np.asarray(attn_block["kv_einsum"]["w"][0, :, :, :]) | ||
) | ||
keras_block.attention.value_dense.kernel.assign( | ||
np.asarray(attn_block["kv_einsum"]["w"][1, :, :, :]) | ||
) | ||
else: | ||
# MHA. | ||
keras_block.attention.query_dense.kernel.assign( | ||
np.asarray(attn_block["qkv_einsum"]["w"][0, :, :, :]) | ||
) | ||
keras_block.attention.key_dense.kernel.assign( | ||
np.asarray(attn_block["qkv_einsum"]["w"][1, :, :, :]) | ||
) | ||
keras_block.attention.value_dense.kernel.assign( | ||
np.asarray(attn_block["qkv_einsum"]["w"][2, :, :, :]) | ||
) | ||
keras_block.attention.output_dense.kernel.assign( | ||
flax_block["attn"]["attn_vec_einsum"]["w"] | ||
) | ||
|
||
|
||
def validate_output( | ||
keras_model, | ||
keras_tokenizer, | ||
flax_params, | ||
flax_tokenizer, | ||
): | ||
input_str = "What is Keras?" | ||
length = 32 | ||
|
||
# KerasNLP | ||
preprocessor = keras_nlp.models.GemmaCausalLMPreprocessor(keras_tokenizer) | ||
gemma_lm = keras_nlp.models.GemmaCausalLM( | ||
backbone=keras_model, | ||
preprocessor=preprocessor, | ||
) | ||
keras_output = gemma_lm.generate([input_str], max_length=length) | ||
keras_output = keras_output[0] | ||
|
||
# Flax | ||
transformer_config = transformer_lib.TransformerConfig.from_params( | ||
flax_params, | ||
cache_size=length, | ||
) | ||
transformer = transformer_lib.Transformer(transformer_config) | ||
sampler = sampler_lib.Sampler( | ||
transformer=transformer, | ||
vocab=flax_tokenizer, | ||
params=flax_params["transformer"], | ||
) | ||
flax_output = sampler( | ||
input_strings=[input_str], | ||
total_generation_steps=length - 5, # Length of "<bos>What is Keras?" | ||
) | ||
flax_output = input_str + flax_output.text[0] | ||
|
||
# Comparing the outputs. | ||
print("🔶 KerasNLP output:", keras_output) | ||
print("🔶 Flax output:", flax_output) | ||
|
||
|
||
def main(_): | ||
preset = FLAGS.preset | ||
|
||
assert ( | ||
preset in PRESET_MAP.keys() | ||
), f'Invalid preset {preset}. Must be one of {",".join(PRESET_MAP.keys())}' | ||
|
||
print(f"🏃 Coverting {preset}") | ||
|
||
# Currently all flax weights are bfloat16 (and have much faster download | ||
# times for it). We follow suit with Keras weights. | ||
keras.config.set_floatx("bfloat16") | ||
|
||
handle = PRESET_MAP[preset] | ||
flax_dir = download_flax_model(handle) | ||
proto_path = flax_dir + "/tokenizer.model" | ||
print("✅ Flax model downloaded from kaggle") | ||
|
||
variant = handle.split("/")[-1] | ||
flax_tokenier = sentencepiece.SentencePieceProcessor() | ||
flax_tokenier.Load(proto_path) | ||
flax_params = params_lib.load_and_format_params(flax_dir + "/" + variant) | ||
flax_config = transformer_lib.TransformerConfig.from_params(flax_params) | ||
print("✅ Flax model loaded") | ||
|
||
keras_tokenizer = convert_tokenizer(proto_path) | ||
vocab_size = keras_tokenizer.vocabulary_size() | ||
keras_model = convert_model(flax_config, vocab_size) | ||
print("✅ Keras model loaded") | ||
|
||
convert_weights(keras_model, flax_config, flax_params) | ||
print("✅ Weights converted") | ||
|
||
validate_output(keras_model, keras_tokenizer, flax_params, flax_tokenier) | ||
print("✅ Output validated") | ||
|
||
keras_nlp.src.utils.preset_utils.save_to_preset(keras_model, preset) | ||
keras_nlp.src.utils.preset_utils.save_to_preset( | ||
keras_tokenizer, preset, config_filename="tokenizer.json" | ||
) | ||
print(f"🏁 Preset saved to ./{preset}") | ||
|
||
|
||
if __name__ == "__main__": | ||
app.run(main) |