The official implementation code repository for EVA-Flow: Towards Anytime Optical Flow Estimation with Event Cameras
@misc{ye2023anytime,
title={Towards Anytime Optical Flow Estimation with Event Cameras},
author={Yaozu Ye and Hao Shi and Kailun Yang and Ze Wang and Xiaoting Yin and Yaonan Wang and Kaiwei Wang},
year={2023},
eprint={2307.05033},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
# create and activate conda environment
conda create -n anyflow python=3.9
conda activate anyflow
# install dependencies for hdf5
conda install blosc-hdf5-plugin=1.0.0 -c conda-forge
conda install pytables
pip install numba h5py hdf5plugin
# install pytorch, torchvision, tensorboard
# torch version: 1.12.1 or higher
# torchvision version: 0.13.1 or higher
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
pip install tensorboard
# imageio depends on freeimage
sudo apt install libfreeimage-dev
# install dependencies for others
pip install tqdm imageio opencv-python pyyaml matplotlib
1.Download the DSEC dataset. Dataset Structure is as follows:
├── DSEC
├── Test
│ ├── test_calibration
│ │ ├── interlaken_00_a
│ │ ├── interlaken_00_b
│ │ ├── ...
│ ├── test_events
│ │ ├── interlaken_00_a
│ │ ├── interlaken_00_b
│ │ ├── ...
│ └── test_forward_optical_flow_timestamps
└── Train
├── train_calibration
│ ├── interlaken_00_c
│ ├── interlaken_00_d
│ ├── ...
├── train_events
│ ├── interlaken_00_c
│ ├── interlaken_00_d
│ ├── ...
└── train_optical_flow
├── thun_00_a
├── zurich_city_01_a
├── ...
- Generate distortion maps for DSEC dataset
python ./utils/gen_dist_map.py -d 'path/to/dataset/DSEC'