12/08/2023 Release the code of UI-system and DiffVL algorithm.
Install Nvidia-docker. Then:
cd DiffVL/docker
sudo bash build.sh
sudo bash run.sh
sudo bash start.sh
conda create -n anno python
conda activate anno
cd TaskAnnotator-cf
pip install -e .
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
For UI system:
python ./ui/tester/test_viewer.py 0
flask --app ./frontend/flaskr init-db
For DiffVL algorithm:
python diffsolver/main.py
Download the Dataset on the google drive.
Put the dataset in the folder: DiffVL/diffsolver/assets/
Make sure the path of every single data follows the format: DiffVL/Diffsolver/assets/Task/Task/data/task_x
flask --app ./frontend/flaskr init-db
flask --app ./frontend/flaskr --debug run --host 0.0.0.0
Then open http://127.0.0.1:5000 in your browser to see the annotator.
Single stage Tasks
python diffsolver/run_single_stage.py lang --config diffsolver/examples/singlestage_dev/task2_wind.yaml
You could choose the config YAML file in the examples/
folder.
Multistage Tasks
python diffsolver/run_multistage.py lang --config diffsolver/examples/multistage/task1/total.yml
You could choose the config YAML file in the examples/
folder.
If you find this codebase useful in your research, please consider citing: