Skip to content

Pytorch reimplementation for "Gradient Surgery for Multi-Task Learning"

License

Notifications You must be signed in to change notification settings

WeiChengTseng/Pytorch-PCGrad

Repository files navigation

PyTorch-PCGrad

This repository provide code of reimplementation for Gradient Surgery for Multi-Task Learning in PyTorch 1.6.0.

Setup

Install the required packages via:

pip install -r requirements.txt

Usage

import torch
import torch.nn as nn
import torch.optim as optim
from pcgrad import PCGrad

# wrap your favorite optimizer
optimizer = PCGrad(optim.Adam(net.parameters())) 
losses = [...] # a list of per-task losses
assert len(losses) == num_tasks
optimizer.pc_backward(losses) # calculate the gradient can apply gradient modification
optimizer.step()  # apply gradient step

Training

  • Mulit-MNIST Please run the training script via the following command. Part of implementation is leveraged from https://github.com/intel-isl/MultiObjectiveOptimization

    python main_multi_mnist.py
    

    The result is shown below.

    Method left-digit right-digit
    Jointly Training 90.30 90.01
    PCGrad (this repo.) 95.00 92.00
    PCGrad (official) 96.58 95.50
  • Cifar100-MTL coming soon

Reference

Please cite as:

@article{yu2020gradient,
  title={Gradient surgery for multi-task learning},
  author={Yu, Tianhe and Kumar, Saurabh and Gupta, Abhishek and Levine, Sergey and Hausman, Karol and Finn, Chelsea},
  journal={arXiv preprint arXiv:2001.06782},
  year={2020}
}

@misc{Pytorch-PCGrad,
  author = {Wei-Cheng Tseng},
  title = {WeiChengTseng/Pytorch-PCGrad},
  url = {https://github.com/WeiChengTseng/Pytorch-PCGrad.git},
  year = {2020}
}