Skip to content

Vortx-AI/memories-dev

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

94 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

memories.dev

Collective Memory for AGI

Documentation License Python 3.9+ Code style: black

Overview

memories.dev is a high-performance infrastructure for providing real-world context to AI models during inference. It processes, indexes, and serves location-tagged intelligence ("memories") from multiple data sources including satellite imagery, climate sensors, and urban development metrics. These memories enhance AI models' understanding and reasoning capabilities with real-world context.

System Architecture

Quick Start

from memories_dev.memories_dev import memories_dev
from memories_dev.memories.earth_memory import EarthMemoryStore
from memories_dev.agents.agent import Agent


# Initialize with advanced models
vx = Vortx(
    models={
        "reasoning": deepseek-coder-small,
        "vision": deepseek-vision-small
    },
    use_gpu=True
)

# Create Earth memories
memory_store = EarthMemoryStore()
memories = memory_store.create_memories(
    location=(37.7749, -122.4194),
    time_range=("2020-01-01", "2024-01-01"),
    modalities=["satellite", "climate", "social"]
)

# Generate synthetic data
synthetic_data = vx.generate_synthetic(
    base_location=(37.7749, -122.4194),
    scenario="urban_development",
    time_steps=10,
    climate_factors=True
)

# AGI reasoning with memories
insights = Agent(
    query="Analyze urban development patterns and environmental impact",
    context_memories=memories,
    synthetic_scenarios=synthetic_data
)

Installation

# Basic installation (Coming Soon)
pip install memories-dev

# With GPU support (Coming Soon)
pip install memories-dev[gpu]

Core Components

πŸ”„ Workflows

Memory Formation Pipeline

graph LR
    %% Node Styles
    classDef input fill:#e3f2fd,stroke:#1565c0,stroke-width:2px
    classDef process fill:#f3e5f5,stroke:#6a1b9a,stroke-width:2px
    classDef storage fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px
    
    %% Input Nodes
    I1(("πŸ“‘ Raw Data")):::input
    I2(("πŸ›°οΈ Satellite")):::input
    I3(("🌑️ Sensors")):::input
    
    %% Processing Nodes
    P1["πŸ”„ Preprocessing"]:::process
    P2["⚑ Feature Extraction"]:::process
    P3["🧠 Memory Formation"]:::process
    
    %% Storage Nodes
    S1[("πŸ’Ύ Vector Store")]:::storage
    S2[("πŸ“Š Time Series DB")]:::storage
    S3[("πŸ—ΊοΈ Spatial Index")]:::storage
    
    %% Flow
    I1 & I2 & I3 --> P1
    P1 --> P2
    P2 --> P3
    P3 --> S1 & S2 & S3
Loading

Query Pipeline

graph TD
    %% Node Styles
    classDef query fill:#fff3e0,stroke:#e65100,stroke-width:2px
    classDef memory fill:#f3e5f5,stroke:#6a1b9a,stroke-width:2px
    classDef output fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px

    %% Query Flow
    Q1["πŸ” Query Request"]:::query
    Q2["πŸ“ Location Filter"]:::query
    Q3["⏱️ Time Filter"]:::query
    
    %% Memory Operations
    M1["🧠 Memory Lookup"]:::memory
    M2["πŸ”„ Context Assembly"]:::memory
    M3["⚑ Real-time Update"]:::memory
    
    %% Output Generation
    O1["πŸ“Š Results"]:::output
    O2["πŸ“ Analysis"]:::output
    O3["πŸ”„ Synthesis"]:::output

    %% Connections
    Q1 --> Q2 & Q3
    Q2 & Q3 --> M1
    M1 --> M2 --> M3
    M3 --> O1 & O2 & O3
Loading

Agent System

graph TD
    %% Node Styles
    classDef agent fill:#fff3e0,stroke:#e65100,stroke-width:2px
    classDef memory fill:#f3e5f5,stroke:#6a1b9a,stroke-width:2px
    classDef task fill:#e3f2fd,stroke:#1565c0,stroke-width:2px

    %% Agent Components
    subgraph "πŸ€– Agent System"
        A1["🧠 Reasoning Engine"]:::agent
        A2["πŸ”„ Memory Integration"]:::agent
        A3["πŸ“Š Analysis Engine"]:::agent
    end

    %% Memory Access
    subgraph "πŸ’Ύ Memory Access"
        M1["πŸ“₯ Retrieval"]:::memory
        M2["πŸ”„ Update"]:::memory
        M3["πŸ” Query"]:::memory
    end

    %% Task Processing
    subgraph "πŸ“‹ Tasks"
        T1["πŸ“Š Analysis"]:::task
        T2["πŸ”„ Synthesis"]:::task
        T3["πŸ“ Reporting"]:::task
    end

    %% Connections
    A1 --> M1 & M2 & M3
    M1 & M2 & M3 --> A2
    A2 --> A3
    A3 --> T1 & T2 & T3
Loading

Memory Architecture

graph TD
    %% Styles
    classDef store fill:#e1f5fe,stroke:#01579b,stroke-width:2px;
    classDef cache fill:#f3e5f5,stroke:#4a148c,stroke-width:2px;
    classDef index fill:#fff3e0,stroke:#e65100,stroke-width:2px;

    %% Memory Store
    subgraph Store[Memory Store]
        V[Vector Store]
        T[Time Series DB]
        S[Spatial Index]
    end

    %% Cache System
    subgraph Cache[Cache Layers]
        L1[L1 Cache - Memory]
        L2[L2 Cache - SSD]
        L3[L3 Cache - Distributed]
    end

    %% Index System
    subgraph Index[Index Types]
        I1[Spatial Index]
        I2[Temporal Index]
        I3[Semantic Index]
    end

    %% Flow
    V & T & S --> L1
    L1 --> L2 --> L3
    L3 --> I1 & I2 & I3

    %% Styles
    class V,T,S store;
    class L1,L2,L3 cache;
    class I1,I2,I3 index;
Loading

Data Flow

graph LR
    %% Styles
    classDef input fill:#e1f5fe,stroke:#01579b,stroke-width:2px;
    classDef process fill:#f3e5f5,stroke:#4a148c,stroke-width:2px;
    classDef output fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px;

    %% Pipeline
    I[Raw Data] --> P1[Preprocessing]
    P1 --> P2[Feature Extraction]
    P2 --> P3[Memory Formation]
    P3 --> P4[Memory Storage]
    P4 --> P5[Memory Retrieval]
    P5 --> O[AI Integration]

    %% Styles
    class I input;
    class P1,P2,P3,P4,P5 process;
    class O output;
Loading

πŸ“š Module Dependencies

graph TD
    %% Node Styles
    classDef core fill:#e3f2fd,stroke:#1565c0,stroke-width:2px
    classDef dep fill:#fff3e0,stroke:#e65100,stroke-width:2px
    classDef util fill:#f3e5f5,stroke:#6a1b9a,stroke-width:2px

    %% Core Modules
    C1["🧠 Memory Core"]:::core
    C2["πŸ€– Agent Core"]:::core
    C3["πŸ“‘ Data Core"]:::core

    %% Dependencies
    D1["πŸ“Š NumPy/Pandas"]:::dep
    D2["πŸ”₯ PyTorch"]:::dep
    D3["πŸ—„οΈ Vector Store"]:::dep
    D4["🌐 Network Utils"]:::dep

    %% Utilities
    U1["βš™οΈ Config"]:::util
    U2["πŸ“ Logging"]:::util
    U3["βœ… Validation"]:::util

    %% Connections
    D1 & D2 --> C1
    D3 --> C1 & C2
    D4 --> C3
    U1 --> C1 & C2 & C3
    U2 --> C1 & C2 & C3
    U3 --> C1 & C2 & C3
Loading

Core Features

Memory Sources

  • Global Points of Interest Database
  • Global Places Database
  • Cadastral Data & Digital Elevation Models
  • Census & Demographics
  • Satellite Data:
    • ESA Sentinel-1 & 2
    • NASA Landsat 7/8
    • Custom data source integration

Key Capabilities

  • Real-time memory synthesis during model inference
  • Context-aware AI reasoning
  • Multi-modal memory fusion
  • Temporal pattern analysis
  • Location-aware intelligence
  • Privacy-preserving memory access

System Requirements

Minimum

  • Python 3.9+
  • 16GB RAM
  • 4+ CPU cores
  • 20GB storage

Recommended

  • 32GB RAM
  • 8+ CPU cores
  • NVIDIA GPU (8GB+ VRAM)
  • 50GB SSD storage

Use Cases

  • Enhanced Language Models: Provide real-world context during inference
  • Report Generation: Create detailed reports with location-specific insights
  • Trend Analysis: Analyze temporal patterns with historical context
  • Impact Assessment: Evaluate environmental and urban development impacts
  • Decision Support: Aid decision-making with contextual intelligence

Contributing

We welcome contributions! See our Contributing Guide for:

  • Development Setup
  • Code Style Guidelines
  • Testing Requirements
  • PR Process

Support

License

Apache License 2.0 - See LICENSE for details.


Empowering AI with Real-World Context