A Python application that integrates Julep AI with a custom Llama model endpoint, providing a flexible and powerful AI agent system with persistent memory and efficient caching.
- 🤖 Custom Llama model integration via OpenAI-compatible API
- 💾 Persistent storage with SQLite
- 🧠 Vector embeddings with ChromaDB
- ⚡ Fast caching with Redis
- 🔒 Secure environment configuration
- 📝 Comprehensive logging system
- Python 3.12+
- Redis server
- Git
- A Julep API key from dev.julep.ai
Please refer to setup.md for detailed installation and configuration instructions.
Julep-AI-Llama/
├── config/
│ ├── agent_config.example.yaml # Template for agent configuration
│ ├── agent_config.yaml # Your custom agent config (git-ignored)
│ └── memory_config.yaml # Memory settings
├── storage/
│ ├── chromadb/ # Vector embeddings storage
│ ├── logs/ # Application logs
│ └── julep.db # SQLite database
├── .env # Environment variables
├── .env.example # Environment template
├── main.py # Main application
├── requirements.txt # Python dependencies
└── README.md # This file
This project follows:
- PEP 8 style guide
- Type hints throughout
- Google-style docstrings
- Black code formatting
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- Julep AI for the agent framework
- The Llama model community
- All contributors to this project