-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
89 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
import cv2 | ||
from cvzone.HandTrackingModule import HandDetector | ||
from cvzone.ClassificationModule import Classifier | ||
import numpy as np | ||
import math | ||
|
||
cap = cv2.VideoCapture(0) | ||
detector = HandDetector(maxHands=1) | ||
classifier = Classifier('keras_model_segmentation.h5', "labels_seg.txt") | ||
|
||
offset = 20 | ||
imgSize = 300 | ||
counter=0 | ||
pred=0 | ||
labels = ['blank', 'fist', 'five', 'ok', 'thumbsdown', 'thumbsup'] | ||
|
||
|
||
|
||
while True: | ||
success, img = cap.read() | ||
imgOutput = img.copy() | ||
hands, img = detector.findHands(img, draw=False) | ||
if hands: | ||
hand = hands[0] | ||
x, y, w, h = hand['bbox'] | ||
|
||
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255 | ||
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset] | ||
|
||
imgCropShape = imgCrop.shape | ||
|
||
aspectRatio = h / w | ||
|
||
if aspectRatio > 1: | ||
k = imgSize / h | ||
wCal = math.ceil(k * w) | ||
imgResize = cv2.resize(imgCrop, (wCal, imgSize)) | ||
imgResizeShape = imgResize.shape | ||
wGap = math.ceil((imgSize - wCal) / 2) | ||
imgWhite[:, wGap:wCal + wGap] = imgResize | ||
|
||
else: | ||
k = imgSize / w | ||
hCal = math.ceil(k * h) | ||
imgResize = cv2.resize(imgCrop, (imgSize, hCal)) | ||
imgResizeShape = imgResize.shape | ||
hGap = math.ceil((imgSize - hCal) / 2) | ||
imgWhite[hGap:hCal + hGap, :] = imgResize | ||
|
||
modelImg = imgWhite.copy() | ||
gray = cv2.cvtColor(modelImg, cv2.COLOR_BGR2GRAY) | ||
gray_inverted = cv2.bitwise_not(gray) | ||
contours, hierarchy = cv2.findContours(gray_inverted, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | ||
_, binary = cv2.threshold(gray_inverted, 100, 255, cv2.THRESH_BINARY) | ||
|
||
# Convert binary image to 3-channel grayscale | ||
binary_rgb = cv2.cvtColor(binary, cv2.COLOR_GRAY2BGR) | ||
|
||
# Resize the image to (224, 224) | ||
resized_img = cv2.resize(binary_rgb, (224, 224)) | ||
|
||
prediction, index = classifier.getPrediction(resized_img) | ||
print(prediction, index) | ||
|
||
pred +=1 | ||
if index == 1: | ||
counter+=1 | ||
|
||
cv2.rectangle(imgOutput, (x - offset, y - offset - 50), | ||
(x - offset + 90, y - offset - 50 + 50), (255, 0, 255), cv2.FILLED) | ||
cv2.putText(imgOutput, labels[index], (x, y - 26), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2) | ||
cv2.rectangle(imgOutput, (x - offset, y - offset), | ||
(x + w + offset, y + h + offset), (255, 0, 255), 4) | ||
|
||
cv2.imshow("Segmentation", resized_img) | ||
cv2.imshow("ImageCrop", imgCrop) | ||
cv2.imshow("ImageWhite", imgWhite) | ||
|
||
cv2.imshow("Image", imgOutput) | ||
key = cv2.waitKey(1) | ||
# Exit when 'q' is pressed | ||
if key & 0xFF == ord('q'): | ||
break | ||
|
||
acc = float(counter/pred) | ||
print(acc) | ||
# Release the webcam and close all windows | ||
cap.release() | ||
cv2.destroyAllWindows() |